IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v30y2019i6d10.1007_s10845-018-1419-6.html
   My bibliography  Save this article

An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems

Author

Listed:
  • Ivona Brajević

    (University of Niš)

  • Jelena Ignjatović

    (University of Niš)

Abstract

The firefly algorithm (FA) has become one of the most prominent swarm intelligence methods due to its efficiency in solving a wide range of various real-world problems. In this paper, an upgraded firefly algorithm (UFA) is proposed to further improve its performance in solving constrained engineering optimization problems. The main modifications of the basic algorithm are the incorporation of the logistic map and reduction scheme mechanism in order to perform fine adjustments of its control parameters, and employing a mutation operator in order to provide useful diversity in the population. Also, the proposed approach uses certain feasibility-based rules in order to guide the search to the feasible region of the search space, the improved scheme to handle the boundary constraints and the method for handling equality constraints. The UFA is tested on a set of 24 benchmark functions presented in CEC’2006 and nine widely used constrained engineering optimization problems. Comprehensive experimental results show that the overall performance of the UFA is superior to the FA and its recently proposed variants. Moreover, it achieves highly competitive results compared with other state-of-the-art metaheuristic techniques.

Suggested Citation

  • Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
  • Handle: RePEc:spr:joinma:v:30:y:2019:i:6:d:10.1007_s10845-018-1419-6
    DOI: 10.1007/s10845-018-1419-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1419-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1419-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fister, Iztok & Perc, Matjaž & Kamal, Salahuddin M. & Fister, Iztok, 2015. "A review of chaos-based firefly algorithms: Perspectives and research challenges," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 155-165.
    2. Kunjie Yu & Xin Wang & Zhenlei Wang, 2016. "An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 831-843, August.
    3. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Tang, Fang & Huang, De-Xian, 2005. "Improved particle swarm optimization combined with chaos," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1261-1271.
    4. Lina Zhang & Liqiang Liu & Xin-She Yang & Yuntao Dai, 2016. "A Novel Hybrid Firefly Algorithm for Global Optimization," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-17, September.
    5. Alejandro Alvarado-Iniesta & Jorge L. García-Alcaraz & Manuel Piña-Monarrez & Luis Pérez-Domínguez, 2016. "Multiobjective optimization of torch brazing process by a hybrid of fuzzy logic and multiobjective artificial bee colony algorithm," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 631-638, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lenin Nagarajan & Siva Kumar Mahalingam & Jayakrishna Kandasamy & Selvakumar Gurusamy, 2022. "A novel approach in selective assembly with an arbitrary distribution to minimize clearance variation using evolutionary algorithms: a comparative study," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1337-1354, June.
    2. Yiying Zhang & Aining Chi, 2023. "Group teaching optimization algorithm with information sharing for numerical optimization and engineering optimization," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1547-1571, April.
    3. Wenchao Yi & Liang Gao & Zhi Pei & Jiansha Lu & Yong Chen, 2021. "ε Constrained differential evolution using halfspace partition for optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 157-178, January.
    4. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    5. Sujata Dash & Ajith Abraham & Ashish Kr Luhach & Jolanta Mizera-Pietraszko & Joel JPC Rodrigues, 2020. "Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    6. Yiying Zhang & Zhigang Jin, 2022. "Comprehensive learning Jaya algorithm for engineering design optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1229-1253, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kostić, Srđan & Vasović, Nebojša & Sunarić, Duško, 2015. "A new approach to grid search method in slope stability analysis using Box–Behnken statistical design," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 425-437.
    2. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    3. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    4. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    5. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    6. Ali Wagdy Mohamed, 2018. "A novel differential evolution algorithm for solving constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 659-692, March.
    7. Shunfu Jin & Xiuchen Qie & Wenjuan Zhao & Wuyi Yue & Yutaka Takahashi, 2020. "A clustered virtual machine allocation strategy based on a sleep-mode with wake-up threshold in a cloud environment," Annals of Operations Research, Springer, vol. 293(1), pages 193-212, October.
    8. Xuanhu He & Wei Wang & Jiuchun Jiang & Lijie Xu, 2015. "An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow," Energies, MDPI, vol. 8(4), pages 1-26, March.
    9. Lin Sun & Suisui Chen & Jiucheng Xu & Yun Tian, 2019. "Improved Monarch Butterfly Optimization Algorithm Based on Opposition-Based Learning and Random Local Perturbation," Complexity, Hindawi, vol. 2019, pages 1-20, February.
    10. Yan, Zheping & Zhang, Jinzhong & Zeng, Jia & Tang, Jialing, 2021. "Nature-inspired approach: An enhanced whale optimization algorithm for global optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 17-46.
    11. B. Koti Reddy & Amit Kumar Singh, 2021. "Optimal Operation of a Photovoltaic Integrated Captive Cogeneration Plant with a Utility Grid Using Optimization and Machine Learning Prediction Methods," Energies, MDPI, vol. 14(16), pages 1-28, August.
    12. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    13. Sujata Dash & Ajith Abraham & Ashish Kr Luhach & Jolanta Mizera-Pietraszko & Joel JPC Rodrigues, 2020. "Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    14. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    15. Zhang, Wen Yu & Hong, Wei-Chiang & Dong, Yucheng & Tsai, Gary & Sung, Jing-Tian & Fan, Guo-feng, 2012. "Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting," Energy, Elsevier, vol. 45(1), pages 850-858.
    16. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    17. Adel Taieb & Moêz Soltani & Abdelkader Chaari, 2017. "Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO," Complexity, Hindawi, vol. 2017, pages 1-11, October.
    18. Izadyar, Nima & Ghadamian, Hossein & Ong, Hwai Chyuan & moghadam, Zeinab & Tong, Chong Wen & Shamshirband, Shahaboddin, 2015. "Appraisal of the support vector machine to forecast residential heating demand for the District Heating System based on the monthly overall natural gas consumption," Energy, Elsevier, vol. 93(P2), pages 1558-1567.
    19. Yang, Dixiong & Li, Gang & Cheng, Gengdong, 2007. "On the efficiency of chaos optimization algorithms for global optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1366-1375.
    20. dos Santos Coelho, Leandro & Coelho, Antonio Augusto Rodrigues, 2009. "Model-free adaptive control optimization using a chaotic particle swarm approach," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2001-2009.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:30:y:2019:i:6:d:10.1007_s10845-018-1419-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.