IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v32y2021i1d10.1007_s10845-020-01565-2.html
   My bibliography  Save this article

ε Constrained differential evolution using halfspace partition for optimization problems

Author

Listed:
  • Wenchao Yi

    (Zhejiang University of Technology)

  • Liang Gao

    (Huazhong University of Science and Technology)

  • Zhi Pei

    (Zhejiang University of Technology)

  • Jiansha Lu

    (Zhejiang University of Technology)

  • Yong Chen

    (Zhejiang University of Technology)

Abstract

There are many efficient and effective constraint-handling mechanisms for constrained optimization problems. However, most of them evaluate all the individuals, including the worse individuals, which waste a lot of fitness evaluations. In this paper, halfspace partition mechanism based on constraint violation values is proposed. Since constraint violation information of individuals in current generation are already known, the positive side of tangent line of one point as positive halfspace is defined. A point is treated as potential point if it locates in the intersect region of two positive halfspaces. Hence, the region includes all these points has greater possibility to obtain smaller constraint violation. Only when the offspring locates in this area, the actual objective function value and constraint violation will be calculated. The estimated worse individuals will be omitted without calculating actual constraint violation and fitness function value. Four engineering optimization and a case study with the grinding optimization process are studied. The experimental results verify the effectiveness of the proposed mechanism.

Suggested Citation

  • Wenchao Yi & Liang Gao & Zhi Pei & Jiansha Lu & Yong Chen, 2021. "ε Constrained differential evolution using halfspace partition for optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 32(1), pages 157-178, January.
  • Handle: RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01565-2
    DOI: 10.1007/s10845-020-01565-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01565-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01565-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    2. Ali Wagdy Mohamed, 2018. "A novel differential evolution algorithm for solving constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 659-692, March.
    3. Wenchao Yi & Yinzhi Zhou & Liang Gao & Xinyu Li & Chunjiang Zhang, 2018. "Engineering design optimization using an improved local search based epsilon differential evolution algorithm," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1559-1580, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenchao Yi & Zhilei Lin & Youbin Lin & Shusheng Xiong & Zitao Yu & Yong Chen, 2023. "Solving Optimal Power Flow Problem via Improved Constrained Adaptive Differential Evolution," Mathematics, MDPI, vol. 11(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.
    2. Yiying Zhang & Zhigang Jin, 2022. "Comprehensive learning Jaya algorithm for engineering design optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1229-1253, June.
    3. Lenin Nagarajan & Siva Kumar Mahalingam & Jayakrishna Kandasamy & Selvakumar Gurusamy, 2022. "A novel approach in selective assembly with an arbitrary distribution to minimize clearance variation using evolutionary algorithms: a comparative study," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1337-1354, June.
    4. Sujata Dash & Ajith Abraham & Ashish Kr Luhach & Jolanta Mizera-Pietraszko & Joel JPC Rodrigues, 2020. "Hybrid chaotic firefly decision making model for Parkinson’s disease diagnosis," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
    5. Chao Huang & Zhenyu Zhao & Qingwen Li & Xiong Luo & Long Wang, 2024. "Wind Power Bidding Based on an Ensemble Differential Evolution Algorithm with a Problem-Specific Constraint-Handling Technique," Energies, MDPI, vol. 17(2), pages 1-14, January.
    6. Anshuman Kumar Sahu & Siba Sankar Mahapatra, 2021. "Prediction and optimization of performance measures in electrical discharge machining using rapid prototyping tool electrodes," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2125-2145, December.
    7. He, Jiao & Jin, Xin & Xie, S.Y. & Cao, Le & Lin, Yifan & Wang, Ning, 2019. "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines," Renewable Energy, Elsevier, vol. 141(C), pages 305-321.
    8. Khalid Abdulaziz Alnowibet & Salem Mahdi & Mahmoud El-Alem & Mohamed Abdelawwad & Ali Wagdy Mohamed, 2022. "Guided Hybrid Modified Simulated Annealing Algorithm for Solving Constrained Global Optimization Problems," Mathematics, MDPI, vol. 10(8), pages 1-25, April.
    9. Aggarwal, Sakshi & Mishra, Krishn K., 2023. "X-MODE: Extended Multi-operator Differential Evolution algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 85-108.
    10. Umesh Balande & Deepti Shrimankar, 2019. "SRIFA: Stochastic Ranking with Improved-Firefly-Algorithm for Constrained Optimization Engineering Design Problems," Mathematics, MDPI, vol. 7(3), pages 1-26, March.
    11. Zhang, Jinzhong & Zhang, Gang & Kong, Min & Zhang, Tan & Wang, Duansong & Chen, Rui, 2023. "CWOA: A novel complex-valued encoding whale optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 151-188.
    12. Yiying Zhang & Aining Chi, 2023. "Group teaching optimization algorithm with information sharing for numerical optimization and engineering optimization," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1547-1571, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01565-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.