IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000621.html
   My bibliography  Save this article

Chaotic evolution optimization: A novel metaheuristic algorithm inspired by chaotic dynamics

Author

Listed:
  • Dong, Yingchao
  • Zhang, Shaohua
  • Zhang, Hongli
  • Zhou, Xiaojun
  • Jiang, Jiading

Abstract

In this paper, a novel population-based metaheuristic algorithm inspired by chaotic dynamics, called chaotic evolution optimization (CEO), is proposed. The main inspiration for CEO is derived from the chaotic evolution process of a two-dimensional discrete memristive map. By leveraging the hyperchaotic properties of the memristive map, the CEO algorithm is mathematically modeled to introduce random search directions for evolutionary processes. Then, the CEO is developed by integrating the crossover and mutation operations from the differential evolution (DE) framework. The proposed algorithm is evaluated by conducting experiments on 15 benchmark test problems and a sensor network localization problem, comparing its performance with 12 other metaheuristic algorithms. Experimental results demonstrate that CEO exhibits highly promising and competitive performance in comparison to widely used, classical, and well-established metaheuristic algorithms. Moreover, CEO effectively addresses the zero-bias problem observed in many recently proposed algorithms. The source code for CEO algorithm will publicly available at: https://github.com/Running-Wolf1010/CEO.

Suggested Citation

  • Dong, Yingchao & Zhang, Shaohua & Zhang, Hongli & Zhou, Xiaojun & Jiang, Jiading, 2025. "Chaotic evolution optimization: A novel metaheuristic algorithm inspired by chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000621
    DOI: 10.1016/j.chaos.2025.116049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000621
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shaohua & Zhang, Hongli & Wang, Cong, 2023. "Memristor initial-boosted extreme multistability in the novel dual-memristor hyperchaotic maps," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    2. He, Shaobo & Hu, Kai & Wang, Mengjiao & Wang, Huihai & Wu, Xianming, 2024. "Design and dynamics of discrete dual-memristor chaotic maps and its application in speech encryption," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    3. Bahbouhi, Jalal Eddine & Elkouay, Abdelali & Bouderba, Saif Islam & Moussa, Najem, 2024. "The whale optimization algorithm and the evolution of cooperation in the spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Dennis Weyland, 2010. "A Rigorous Analysis of the Harmony Search Algorithm: How the Research Community can be Misled by a “Novel” Methodology," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 1(2), pages 50-60, April.
    5. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Tang, Fang & Huang, De-Xian, 2005. "Improved particle swarm optimization combined with chaos," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1261-1271.
    6. E. Bonabeau & M. Dorigo & G. Theraulaz, 2000. "Inspiration for optimization from social insect behaviour," Nature, Nature, vol. 406(6791), pages 39-42, July.
    7. Zhao, Qianhan & Bao, Han & Zhang, Xi & Wu, Huagan & Bao, Bocheng, 2024. "Complexity enhancement and grid basin of attraction in a locally active memristor-based multi-cavity map," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Garcia-Martinez, C. & Lozano, M. & Herrera, F. & Molina, D. & Sanchez, A.M., 2008. "Global and local real-coded genetic algorithms based on parent-centric crossover operators," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1088-1113, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weyland, Dennis, 2015. "A critical analysis of the harmony search algorithm—How not to solve sudoku," Operations Research Perspectives, Elsevier, vol. 2(C), pages 97-105.
    2. Ivona Brajević & Jelena Ignjatović, 2019. "An upgraded firefly algorithm with feasibility-based rules for constrained engineering optimization problems," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2545-2574, August.
    3. Liying Xu & Jiadi Zhu & Bing Chen & Zhen Yang & Keqin Liu & Bingjie Dang & Teng Zhang & Yuchao Yang & Ru Huang, 2022. "A distributed nanocluster based multi-agent evolutionary network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    5. Zhou, Mingjie & Li, Guodong & Pan, Hepeng & Song, Xiaoming, 2025. "Discrete memristive hyperchaotic map with heterogeneous and homogeneous multistability and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    6. Xiaoqing Zhao & Qifa Yue & Jianchao Pei & Junwei Pu & Pei Huang & Qian Wang, 2021. "Ecological Security Pattern Construction in Karst Area Based on Ant Algorithm," IJERPH, MDPI, vol. 18(13), pages 1-21, June.
    7. Wang, Jianzhou & Qin, Shanshan & Jin, Shiqiang & Wu, Jie, 2015. "Estimation methods review and analysis of offshore extreme wind speeds and wind energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 26-42.
    8. Xuanhu He & Wei Wang & Jiuchun Jiang & Lijie Xu, 2015. "An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow," Energies, MDPI, vol. 8(4), pages 1-26, March.
    9. Wang, Chunhua & Li, Yufei & Deng, Quanli, 2025. "Discrete-time fractional-order local active memristor-based Hopfield neural network and its FPGA implementation," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
    10. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    11. Chiara Furio & Luciano Lamberti & Catalin I. Pruncu, 2024. "Mechanical and Civil Engineering Optimization with a Very Simple Hybrid Grey Wolf—JAYA Metaheuristic Optimizer," Mathematics, MDPI, vol. 12(22), pages 1-68, November.
    12. El-Shorbagy, M.A. & Mousa, A.A. & Nasr, S.M., 2016. "A chaos-based evolutionary algorithm for general nonlinear programming problems," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 8-21.
    13. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    14. Hossein Lotfi, 2022. "A Multiobjective Evolutionary Approach for Solving the Multi-Area Dynamic Economic Emission Dispatch Problem Considering Reliability Concerns," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    15. Zhang, Wen Yu & Hong, Wei-Chiang & Dong, Yucheng & Tsai, Gary & Sung, Jing-Tian & Fan, Guo-feng, 2012. "Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting," Energy, Elsevier, vol. 45(1), pages 850-858.
    16. Scianna, Marco, 2024. "The AddACO: A bio-inspired modified version of the ant colony optimization algorithm to solve travel salesman problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 357-382.
    17. He, Qie & Wang, Ling & Liu, Bo, 2007. "Parameter estimation for chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 654-661.
    18. Adel Taieb & Moêz Soltani & Abdelkader Chaari, 2017. "Parameter Optimization of MIMO Fuzzy Optimal Model Predictive Control By APSO," Complexity, Hindawi, vol. 2017, pages 1-11, October.
    19. Wu Zhu & Jian-an Fang & Yang Tang & Wenbing Zhang & Wei Du, 2012. "Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    20. Carsten Gottschlich & Dominic Schuhmacher, 2014. "The Shortlist Method for Fast Computation of the Earth Mover's Distance and Finding Optimal Solutions to Transportation Problems," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-10, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.