IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0015472.html
   My bibliography  Save this article

Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions

Author

Listed:
  • Chia Hsiang Chen
  • Vincent Gau
  • Donna D Zhang
  • Joseph C Liao
  • Fei-Yue Wang
  • Pak Kin Wong

Abstract

Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO) scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

Suggested Citation

  • Chia Hsiang Chen & Vincent Gau & Donna D Zhang & Joseph C Liao & Fei-Yue Wang & Pak Kin Wong, 2010. "Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-7, November.
  • Handle: RePEc:plo:pone00:0015472
    DOI: 10.1371/journal.pone.0015472
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015472
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015472&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0015472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Wu & Shankar Balasubramanian & Daniel Kagan & Kalayil Manian Manesh & Susana Campuzano & Joseph Wang, 2010. "Motion-based DNA detection using catalytic nanomotors," Nature Communications, Nature, vol. 1(1), pages 1-6, December.
    2. Alan S. Perelson & Paulina Essunger & Yunzhen Cao & Mika Vesanen & Arlene Hurley & Kalle Saksela & Martin Markowitz & David D. Ho, 1997. "Decay characteristics of HIV-1-infected compartments during combination therapy," Nature, Nature, vol. 387(6629), pages 188-191, May.
    3. E. Bonabeau & M. Dorigo & G. Theraulaz, 2000. "Inspiration for optimization from social insect behaviour," Nature, Nature, vol. 406(6791), pages 39-42, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yingchao & Zhang, Shaohua & Zhang, Hongli & Zhou, Xiaojun & Jiang, Jiading, 2025. "Chaotic evolution optimization: A novel metaheuristic algorithm inspired by chaotic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    2. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    3. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    4. Xiaoqing Zhao & Qifa Yue & Jianchao Pei & Junwei Pu & Pei Huang & Qian Wang, 2021. "Ecological Security Pattern Construction in Karst Area Based on Ant Algorithm," IJERPH, MDPI, vol. 18(13), pages 1-21, June.
    5. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    6. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    7. Gao, Shangce & Wang, Yirui & Cheng, Jiujun & Inazumi, Yasuhiro & Tang, Zheng, 2016. "Ant colony optimization with clustering for solving the dynamic location routing problem," Applied Mathematics and Computation, Elsevier, vol. 285(C), pages 149-173.
    8. Nicolas Rapin & Ole Lund & Massimo Bernaschi & Filippo Castiglione, 2010. "Computational Immunology Meets Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the Immune System," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-14, April.
    9. Baleanu, Dumitru & Hasanabadi, Manijeh & Mahmoudzadeh Vaziri, Asadollah & Jajarmi, Amin, 2023. "A new intervention strategy for an HIV/AIDS transmission by a general fractional modeling and an optimal control approach," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. James B Gilmore & Anthony D Kelleher & David A Cooper & John M Murray, 2013. "Explaining the Determinants of First Phase HIV Decay Dynamics through the Effects of Stage-dependent Drug Action," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-12, March.
    11. Chowdhury, Sourav & Ghosh, Jayanta Kumar & Ghosh, Uttam, 2024. "Co-infection dynamics between HIV-HTLV-I disease with the effects of Cytotoxic T-lymphocytes, saturated incidence rate and study of optimal control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 195-218.
    12. Luo, Hao & Du, Bing & Huang, George Q. & Chen, Huaping & Li, Xiaolin, 2013. "Hybrid flow shop scheduling considering machine electricity consumption cost," International Journal of Production Economics, Elsevier, vol. 146(2), pages 423-439.
    13. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    14. Rebecca M. D'Amato & Richard T. D'Aquila & Lawrence M. Wein, 2000. "Management of Antiretroviral Therapy for HIV Infection: Analyzing When to Change Therapy," Management Science, INFORMS, vol. 46(9), pages 1200-1213, September.
    15. Chen, Wei & Zhang, Long & Wang, Ning & Teng, Zhidong, 2024. "Bifurcation analysis and chaos for a double-strains HIV coinfection model with intracellular delays, saturated incidence and Logistic growth," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 617-641.
    16. Ngoc, Ngo Phuoc Nguyen & Thi, Huynh Anh & Vinh, Nguyen Van, 2024. "An exactly solvable model for single-lane unidirectional ant traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 651(C).
    17. Alton Barbehenn & Lei Shi & Junzhe Shao & Rebecca Hoh & Heather M. Hartig & Vivian Pae & Sannidhi Sarvadhavabhatla & Sophia Donaire & Caroline Sheikhzadeh & Jeffrey Milush & Gregory M. Laird & Mignot , 2024. "Rapid biphasic decay of intact and defective HIV DNA reservoir during acute treated HIV disease," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Ahmed M. Elaiw & Noura H. AlShamrani, 2020. "HTLV/HIV Dual Infection: Modeling and Analysis," Mathematics, MDPI, vol. 9(1), pages 1-32, December.
    19. González, Ramón E.R. & Coutinho, Sérgio & Zorzenon dos Santos, Rita Maria & de Figueirêdo, Pedro Hugo, 2013. "Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4701-4716.
    20. Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0015472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.