IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v188y2021icp548-570.html
   My bibliography  Save this article

Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses

Author

Listed:
  • Qi, Kai
  • Jiang, Daqing
  • Hayat, Tasawar
  • Alsaedi, Ahmed

Abstract

This study investigated the impact of white noise on the HIV/AIDS model with a cytotoxic T lymphocyte (CTL) immune response. The model introduced the interactions between the virus and two kinds of target cells, CD4+ T cells and macrophages. It was theoretically proved that the solution of the stochastic model is positive and global, as well as the existence of an ergodic stationary distribution. The sufficient conditions were established for viral eradication. By comparing these new results to those of a deterministic model, it is determined that white noise can promote the extinction of the virus. Theoretical results have been verified by numerical simulation of several examples.

Suggested Citation

  • Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
  • Handle: RePEc:eee:matcom:v:188:y:2021:i:c:p:548-570
    DOI: 10.1016/j.matcom.2021.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421001804
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Witbooi, Peter J., 2013. "Stability of an SEIR epidemic model with independent stochastic perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4928-4936.
    2. Peng, Shige & Zhu, Xuehong, 2006. "Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 370-380, March.
    3. Wang, Yan & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "A stochastic HIV infection model with T-cell proliferation and CTL immune response," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 477-493.
    4. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    5. Alan S. Perelson & Paulina Essunger & Yunzhen Cao & Mika Vesanen & Arlene Hurley & Kalle Saksela & Martin Markowitz & David D. Ho, 1997. "Decay characteristics of HIV-1-infected compartments during combination therapy," Nature, Nature, vol. 387(6629), pages 188-191, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Yiping & Cai, Yongli & Sun, Xiaodan & Wang, Kai & Yao, Ruoxia & Wang, Weiming & Peng, Zhihang, 2022. "A stochastic SICA model for HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    2. Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. A. M. Elaiw & N. H. AlShamrani & E. Dahy & A. A. Abdellatif & Aeshah A. Raezah, 2023. "Effect of Macrophages and Latent Reservoirs on the Dynamics of HTLV-I and HIV-1 Coinfection," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    4. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    5. Elaiw, A.M. & Alsaedi, A.J. & Hobiny, A.D. & Aly, S., 2023. "Stability of a delayed SARS-CoV-2 reactivation model with logistic growth and adaptive immune response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qesmi, Redouane & Hammoumi, Aayah, 2020. "A stochastic delay model of HIV pathogenesis with reactivation of latent reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    2. Liu, Qun & Chen, Qingmei, 2015. "Dynamics of stochastic delay Lotka–Volterra systems with impulsive toxicant input and Lévy noise in polluted environments," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 52-67.
    3. Zhang, Xinhong & Li, Wenxue & Liu, Meng & Wang, Ke, 2015. "Dynamics of a stochastic Holling II one-predator two-prey system with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 571-582.
    4. Liu, Qun & Jiang, Daqing, 2020. "Dynamical behavior of a higher order stochastically perturbed HIV/AIDS model with differential infectivity and amelioration," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Shi, Zhenfeng & Jiang, Daqing, 2022. "Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Yang, Jiangtao, 2020. "Threshold behavior in a stochastic predator–prey model with general functional response," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    7. Tan, Yiping & Cai, Yongli & Sun, Xiaodan & Wang, Kai & Yao, Ruoxia & Wang, Weiming & Peng, Zhihang, 2022. "A stochastic SICA model for HIV/AIDS transmission," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    8. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Stationary distribution and extinction of a stochastic HIV-1 model with Beddington–DeAngelis infection rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 414-426.
    9. Zhai, Xuanpei & Li, Wenshuang & Wei, Fengying & Mao, Xuerong, 2023. "Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    10. Wang, Yan & Qi, Kai & Jiang, Daqing, 2021. "An HIV latent infection model with cell-to-cell transmission and stochastic perturbation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    11. Cheng, Yan & Li, Mingtao & Zhang, Fumin, 2019. "A dynamics stochastic model with HIV infection of CD4+ T-cells driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 62-70.
    12. Yuxiao Zhao & Linshan Wang, 2022. "Practical Exponential Stability of Impulsive Stochastic Food Chain System with Time-Varying Delays," Mathematics, MDPI, vol. 11(1), pages 1-12, December.
    13. Wang, Yan & Jiang, Daqing & Alsaedi, Ahmed & Hayat, Tasawar, 2018. "Modelling a stochastic HIV model with logistic target cell growth and nonlinear immune response function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 276-292.
    14. Wei, Fengying & Chen, Fangxiang, 2016. "Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 99-107.
    15. Lu, Minmin & Wang, Yan & Jiang, Daqing, 2021. "Stationary distribution and probability density function analysis of a stochastic HIV model with cell-to-cell infection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    16. Chinnadurai, M. & Fatini, Mohamed El & Rathinasamy, A., 2023. "Stochastic perturbation to 2-LTR dynamical model in HIV infected patients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 473-497.
    17. Arshad, Sadia & Defterli, Ozlem & Baleanu, Dumitru, 2020. "A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    18. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    19. Romuald Élie & Emma Hubert & Thibaut Mastrolia & Dylan Possamaï, 2021. "Mean–field moral hazard for optimal energy demand response management," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 399-473, January.
    20. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:188:y:2021:i:c:p:548-570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.