IDEAS home Printed from https://ideas.repec.org/a/spr/aqjoor/v22y2024i1d10.1007_s10288-023-00541-9.html
   My bibliography  Save this article

Derivative-free separable quadratic modeling and cubic regularization for unconstrained optimization

Author

Listed:
  • A. L. Custódio

    (FCT NOVA
    FCT NOVA)

  • R. Garmanjani

    (FCT NOVA)

  • M. Raydan

    (FCT NOVA)

Abstract

We present a derivative-free separable quadratic modeling and cubic regularization technique for solving smooth unconstrained minimization problems. The derivative-free approach is mainly concerned with building a quadratic model that could be generated by numerical interpolation or using a minimum Frobenius norm approach, when the number of points available does not allow to build a complete quadratic model. This model plays a key role to generate an approximated gradient vector and Hessian matrix of the objective function at every iteration. We add a specialized cubic regularization strategy to minimize the quadratic model at each iteration, that makes use of separability. We discuss convergence results, including worst case complexity, of the proposed schemes to first-order stationary points. Some preliminary numerical results are presented to illustrate the robustness of the specialized separable cubic algorithm.

Suggested Citation

  • A. L. Custódio & R. Garmanjani & M. Raydan, 2024. "Derivative-free separable quadratic modeling and cubic regularization for unconstrained optimization," 4OR, Springer, vol. 22(1), pages 121-144, March.
  • Handle: RePEc:spr:aqjoor:v:22:y:2024:i:1:d:10.1007_s10288-023-00541-9
    DOI: 10.1007/s10288-023-00541-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10288-023-00541-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10288-023-00541-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Gould & Dominique Orban & Philippe Toint, 2015. "CUTEst: a Constrained and Unconstrained Testing Environment with safe threads for mathematical optimization," Computational Optimization and Applications, Springer, vol. 60(3), pages 545-557, April.
    2. Sha Lu & Zengxin Wei & Lue Li, 2012. "A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization," Computational Optimization and Applications, Springer, vol. 51(2), pages 551-573, March.
    3. J. M. Martínez & M. Raydan, 2017. "Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization," Journal of Global Optimization, Springer, vol. 68(2), pages 367-385, June.
    4. C. P. Brás & J. M. Martínez & M. Raydan, 2020. "Large-scale unconstrained optimization using separable cubic modeling and matrix-free subspace minimization," Computational Optimization and Applications, Springer, vol. 75(1), pages 169-205, January.
    5. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    7. Elizabeth Karas & Sandra Santos & Benar Svaiter, 2015. "Algebraic rules for quadratic regularization of Newton’s method," Computational Optimization and Applications, Springer, vol. 60(2), pages 343-376, March.
    8. A. Custódio & H. Rocha & L. Vicente, 2010. "Incorporating minimum Frobenius norm models in direct search," Computational Optimization and Applications, Springer, vol. 46(2), pages 265-278, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    2. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    3. C. P. Brás & J. M. Martínez & M. Raydan, 2020. "Large-scale unconstrained optimization using separable cubic modeling and matrix-free subspace minimization," Computational Optimization and Applications, Springer, vol. 75(1), pages 169-205, January.
    4. Chuan He & Heng Huang & Zhaosong Lu, 2024. "A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 843-894, December.
    5. E. G. Birgin & J. M. Martínez, 2019. "A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 707-753, July.
    6. J. M. Martínez & L. T. Santos, 2022. "On large-scale unconstrained optimization and arbitrary regularization," Computational Optimization and Applications, Springer, vol. 81(1), pages 1-30, January.
    7. J. M. Martínez & M. Raydan, 2017. "Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization," Journal of Global Optimization, Springer, vol. 68(2), pages 367-385, June.
    8. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.
    9. Geovani N. Grapiglia & Ekkehard W. Sachs, 2017. "On the worst-case evaluation complexity of non-monotone line search algorithms," Computational Optimization and Applications, Springer, vol. 68(3), pages 555-577, December.
    10. El Houcine Bergou & Youssef Diouane & Serge Gratton, 2018. "A Line-Search Algorithm Inspired by the Adaptive Cubic Regularization Framework and Complexity Analysis," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 885-913, September.
    11. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    12. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    13. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.
    14. Weiwei Kong & Jefferson G. Melo & Renato D. C. Monteiro, 2020. "An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 305-346, June.
    15. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    16. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    17. Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
    18. Matteo Lapucci & Alessio Sortino, 2024. "On the Convergence of Inexact Alternate Minimization in Problems with $$\ell _0$$ ℓ 0 Penalties," SN Operations Research Forum, Springer, vol. 5(2), pages 1-11, June.
    19. S. Gratton & Ph. L. Toint, 2020. "A note on solving nonlinear optimization problems in variable precision," Computational Optimization and Applications, Springer, vol. 76(3), pages 917-933, July.
    20. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aqjoor:v:22:y:2024:i:1:d:10.1007_s10288-023-00541-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.