IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v463y2024ics0096300323005349.html
   My bibliography  Save this article

Convergence properties of Levenberg–Marquardt methods with generalized regularization terms

Author

Listed:
  • Ariizumi, Shumpei
  • Yamakawa, Yuya
  • Yamashita, Nobuo

Abstract

Levenberg–Marquardt methods (LMMs) are the most typical algorithms for solving nonlinear equations F(x)=0, where F:Rn→Rm is a continuously differentiable function. They sequentially solve subproblems represented as squared residual of the Newton equations with the L2 regularization to determine the search direction. However, since the subproblems of the LMMs are usually reduced to linear equations with n variables, it takes much time to solve them when m≪n.

Suggested Citation

  • Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
  • Handle: RePEc:eee:apmaco:v:463:y:2024:i:c:s0096300323005349
    DOI: 10.1016/j.amc.2023.128365
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323005349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.128365?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, December.
    2. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Gallego & Andrés Hernando, 2009. "School Choice in Chile: Looking at the Demand Side," Documentos de Trabajo 356, Instituto de Economia. Pontificia Universidad Católica de Chile..
    2. Salerno, Gillian & Beard, Rodney & McDonald, Stuart, 2007. "Rent Seeking Behavior and Optimal Taxation of Pollution in Shallow Lakes," MPRA Paper 11225, University Library of Munich, Germany, revised 22 Oct 2008.
    3. Maria Casanova-Rivas, 2008. "Dynamic Complementarities: A Computational and Empirical Analysis of Couples' Retirement Decisions," 2008 Meeting Papers 1073, Society for Economic Dynamics.
    4. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
    5. Jacques Le Cacheux & Vincent Touzé, 2002. "Les modèles d'équilibre général calculable à générations imbriquées. Enjeux, méthodes et résultats," Revue de l'OFCE, Presses de Sciences-Po, vol. 80(1), pages 87-113.
    6. Karantounias, Anastasios G., 2023. "Doubts about the model and optimal policy," Journal of Economic Theory, Elsevier, vol. 210(C).
    7. Pelin Ilbas, 2006. "Optimal Monetary Policy rules for the Euro area in a DSGE framework," Working Papers of Department of Economics, Leuven ces0613, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    8. Atanas Christev, 2006. "Learning Hyperinflations," Computing in Economics and Finance 2006 475, Society for Computational Economics.
    9. Borovička, Jaroslav & Hansen, Lars Peter, 2014. "Examining macroeconomic models through the lens of asset pricing," Journal of Econometrics, Elsevier, vol. 183(1), pages 67-90.
    10. Nikolaj Malchow-Møller & Michael Svarer, 2003. "Estimation of the multinomial logit model with random effects," Applied Economics Letters, Taylor & Francis Journals, vol. 10(7), pages 389-392.
    11. Röhrs, Sigrid & Winter, Christoph, 2017. "Reducing government debt in the presence of inequality," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 1-20.
    12. Gomme, Paul & Klein, Paul, 2011. "Second-order approximation of dynamic models without the use of tensors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 604-615, April.
    13. Wieland, Volker, 2000. "Monetary policy, parameter uncertainty and optimal learning," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 199-228, August.
    14. Adam, Klaus & Billi, Roberto M., 2006. "Optimal Monetary Policy under Commitment with a Zero Bound on Nominal Interest Rates," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(7), pages 1877-1905, October.
    15. Levine, Paul & Pearlman, Joseph & Pierse, Richard, 2008. "Linear-quadratic approximation, external habit and targeting rules," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3315-3349, October.
    16. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    17. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).
    18. Hugo Benítez-Silva & Eva Cárceles-Poveda & Selçuk Eren, 2011. "Effects of Legal and Unauthorized Immigration on the U.S. Social Security System," Working Papers wp250, University of Michigan, Michigan Retirement Research Center.
    19. Miao, Jianjun & Wang, Neng, 2007. "Investment, consumption, and hedging under incomplete markets," Journal of Financial Economics, Elsevier, vol. 86(3), pages 608-642, December.
    20. Bjarne S. Jensen, 2004. "Pareto Efficiency, Relative Prices, and Solutions to CGE Models," DEGIT Conference Papers c009_006, DEGIT, Dynamics, Economic Growth, and International Trade.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:463:y:2024:i:c:s0096300323005349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.