IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v491y2025ics0096300324006805.html
   My bibliography  Save this article

Convergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problems

Author

Listed:
  • Yamakawa, Yuya
  • Yamashita, Nobuo

Abstract

This paper presents a regularized Newton method (RNM) with generalized regularization terms for unconstrained convex optimization problems. The generalized regularization includes quadratic, cubic, and elastic net regularizations as special cases. Therefore, the proposed method serves as a general framework that includes not only the classical and cubic RNMs but also a novel RNM with elastic net regularization. We show that the proposed RNM has the global O(k−2) and local superlinear convergence, which are the same as those of the cubic RNM.

Suggested Citation

  • Yamakawa, Yuya & Yamashita, Nobuo, 2025. "Convergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problems," Applied Mathematics and Computation, Elsevier, vol. 491(C).
  • Handle: RePEc:eee:apmaco:v:491:y:2025:i:c:s0096300324006805
    DOI: 10.1016/j.amc.2024.129219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324006805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.129219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    3. Ying-Jie Li & Dong-Hui Li, 2009. "Truncated regularized Newton method for convex minimizations," Computational Optimization and Applications, Springer, vol. 43(1), pages 119-131, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianyu Xiao & Haibin Zhang & Huan Gao, 2025. "A Chebyshev–Halley Method with Gradient Regularization and an Improved Convergence Rate," Mathematics, MDPI, vol. 13(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenji Ueda & Nobuo Yamashita, 2014. "A regularized Newton method without line search for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 59(1), pages 321-351, October.
    2. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    3. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    4. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.
    5. Weiwei Kong & Jefferson G. Melo & Renato D. C. Monteiro, 2020. "An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 305-346, June.
    6. Chuan He & Heng Huang & Zhaosong Lu, 2024. "A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 843-894, December.
    7. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    8. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    9. Jianyu Xiao & Haibin Zhang & Huan Gao, 2025. "A Chebyshev–Halley Method with Gradient Regularization and an Improved Convergence Rate," Mathematics, MDPI, vol. 13(8), pages 1-17, April.
    10. Liaoyuan Zeng & Ting Kei Pong, 2022. "$$\rho$$ ρ -regularization subproblems: strong duality and an eigensolver-based algorithm," Computational Optimization and Applications, Springer, vol. 81(2), pages 337-368, March.
    11. Paul Armand & Ngoc Nguyen Tran, 2021. "Local Convergence Analysis of a Primal–Dual Method for Bound-Constrained Optimization Without SOSC," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 96-116, April.
    12. J. M. Martínez & L. T. Santos, 2022. "On large-scale unconstrained optimization and arbitrary regularization," Computational Optimization and Applications, Springer, vol. 81(1), pages 1-30, January.
    13. A. L. Custódio & R. Garmanjani & M. Raydan, 2024. "Derivative-free separable quadratic modeling and cubic regularization for unconstrained optimization," 4OR, Springer, vol. 22(1), pages 121-144, March.
    14. Yuning Jiang & Dimitris Kouzoupis & Haoyu Yin & Moritz Diehl & Boris Houska, 2021. "Decentralized Optimization Over Tree Graphs," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 384-407, May.
    15. Nesterov, Yurii, 2022. "Quartic Regularity," LIDAM Discussion Papers CORE 2022001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.
    17. Yuquan Chen & Yunkang Sun & Bing Wang, 2023. "Improving the Performance of Optimization Algorithms Using the Adaptive Fixed-Time Scheme and Reset Scheme," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    18. Hong Zhu & Yunhai Xiao, 2024. "A hybrid inexact regularized Newton and negative curvature method," Computational Optimization and Applications, Springer, vol. 88(3), pages 849-870, July.
    19. Yurii Nesterov, 2021. "Superfast Second-Order Methods for Unconstrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 1-30, October.
    20. Jaroslav Fowkes & Nicholas Gould & Chris Farmer, 2013. "A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions," Journal of Global Optimization, Springer, vol. 56(4), pages 1791-1815, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:491:y:2025:i:c:s0096300324006805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.