IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v88y2024i3d10.1007_s10589-024-00576-6.html
   My bibliography  Save this article

A hybrid inexact regularized Newton and negative curvature method

Author

Listed:
  • Hong Zhu

    (Jiangsu University)

  • Yunhai Xiao

    (Henan University)

Abstract

In this paper, we propose a hybrid inexact regularized Newton and negative curvature method for solving unconstrained nonconvex problems. The descent direction is chosen based on different conditions, either the negative curvature or the inexact regularized direction. In addition, to minimize computational costs while obtaining the negative curvature, we employ a dimensionality reduction strategy to verify if the Hessian matrix exhibits negative curvatures within a three-dimensional subspace. We show that the proposed method can achieve the best-known global iteration complexity if the Hessian of the objective function is Lipschitz continuous on a certain compact set. Two simplified methods for nonconvex and strongly convex problems are analyzed as specific instances of the proposed method. We show that under the local error bound assumption with respect to the gradient, the distance between iterations generated by our proposed method and the local solution set converges to $$0$$ 0 at a superlinear rate. Additionally, for strongly convex problems, the quadratic convergence rate can be achieved. Extensive numerical experiments show the effectiveness of the proposed method.

Suggested Citation

  • Hong Zhu & Yunhai Xiao, 2024. "A hybrid inexact regularized Newton and negative curvature method," Computational Optimization and Applications, Springer, vol. 88(3), pages 849-870, July.
  • Handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00576-6
    DOI: 10.1007/s10589-024-00576-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00576-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00576-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan Li & Xiaoling Sun, 2006. "Nonlinear Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-32995-6, December.
    2. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    2. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    3. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.
    4. Weiwei Kong & Jefferson G. Melo & Renato D. C. Monteiro, 2020. "An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 305-346, June.
    5. Chuan He & Heng Huang & Zhaosong Lu, 2024. "A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 843-894, December.
    6. Geovani Nunes Grapiglia & Jinyun Yuan & Ya-xiang Yuan, 2016. "Nonlinear Stepsize Control Algorithms: Complexity Bounds for First- and Second-Order Optimality," Journal of Optimization Theory and Applications, Springer, vol. 171(3), pages 980-997, December.
    7. Guo, Jian-Xin & Huang, Chen, 2020. "Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050," Applied Energy, Elsevier, vol. 259(C).
    8. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2019. "Reaching social consensus family budgets: The Spanish case," Omega, Elsevier, vol. 86(C), pages 28-41.
    9. Matteo Lapucci & Tommaso Levato & Francesco Rinaldi & Marco Sciandrone, 2023. "A Unifying Framework for Sparsity-Constrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 199(2), pages 663-692, November.
    10. Fatima Bellahcene, 2019. "Application of the polyblock method to special integer chance constrained problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 23-40.
    11. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.
    12. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    13. L. Escudero & M. Garín & G. Pérez & A. Unzueta, 2012. "Lagrangian Decomposition for large-scale two-stage stochastic mixed 0-1 problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 347-374, July.
    14. Yamakawa, Yuya & Yamashita, Nobuo, 2025. "Convergence analysis of a regularized Newton method with generalized regularization terms for unconstrained convex optimization problems," Applied Mathematics and Computation, Elsevier, vol. 491(C).
    15. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    16. Bin Zhang & Bo Chen, 2012. "Heuristic And Exact Solution Method For Convex Nonlinear Knapsack Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 29(05), pages 1-14.
    17. Lin, Yun Hui & Wang, Yuan & Lee, Loo Hay & Chew, Ek Peng, 2022. "Omnichannel facility location and fulfillment optimization," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 187-209.
    18. Jianyu Xiao & Haibin Zhang & Huan Gao, 2025. "A Chebyshev–Halley Method with Gradient Regularization and an Improved Convergence Rate," Mathematics, MDPI, vol. 13(8), pages 1-17, April.
    19. Federico Della Croce & Dominique Quadri, 2012. "Improving an exact approach for solving separable integer quadratic knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 23(1), pages 21-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:88:y:2024:i:3:d:10.1007_s10589-024-00576-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.