IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v76y2020i2d10.1007_s10589-020-00188-w.html
   My bibliography  Save this article

An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems

Author

Listed:
  • Weiwei Kong

    (Georgia Institute of Technology)

  • Jefferson G. Melo

    (Federal University of Goias)

  • Renato D. C. Monteiro

    (Georgia Institute of Technology)

Abstract

This paper proposes an efficient adaptive variant of a quadratic penalty accelerated inexact proximal point (QP-AIPP) method proposed earlier by the authors. Both the QP-AIPP method and its variant solve linearly set constrained nonconvex composite optimization problems using a quadratic penalty approach where the generated penalized subproblems are solved by a variant of the underlying AIPP method. The variant, in turn, solves a given penalized subproblem by generating a sequence of proximal subproblems which are then solved by an accelerated composite gradient algorithm. The main difference between AIPP and its variant is that the proximal subproblems in the former are always convex while the ones in the latter are not necessarily convex due to the fact that their prox parameters are chosen as aggressively as possible so as to improve efficiency. The possibly nonconvex proximal subproblems generated by the AIPP variant are also tentatively solved by a novel adaptive accelerated composite gradient algorithm based on the validity of some key convergence inequalities. As a result, the variant generates a sequence of proximal subproblems where the stepsizes are adaptively changed according to the responses obtained from the calls to the accelerated composite gradient algorithm. Finally, numerical results are given to demonstrate the efficiency of the proposed AIPP and QP-AIPP variants.

Suggested Citation

  • Weiwei Kong & Jefferson G. Melo & Renato D. C. Monteiro, 2020. "An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 305-346, June.
  • Handle: RePEc:spr:coopap:v:76:y:2020:i:2:d:10.1007_s10589-020-00188-w
    DOI: 10.1007/s10589-020-00188-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00188-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00188-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    2. Quoc Tran-Dinh, 2019. "Proximal alternating penalty algorithms for nonsmooth constrained convex optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 1-43, January.
    3. Renato D. C. Monteiro & Camilo Ortiz & Benar F. Svaiter, 2016. "An adaptive accelerated first-order method for convex optimization," Computational Optimization and Applications, Springer, vol. 64(1), pages 31-73, May.
    4. NESTEROV, Yurii & POLYAK, B.T., 2006. "Cubic regularization of Newton method and its global performance," LIDAM Reprints CORE 1927, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiwei Kong & Renato D. C. Monteiro, 2023. "An accelerated inexact dampened augmented Lagrangian method for linearly-constrained nonconvex composite optimization problems," Computational Optimization and Applications, Springer, vol. 85(2), pages 509-545, June.
    2. Silvia Berra & Alessandro Torraca & Federico Benvenuto & Sara Sommariva, 2024. "Combined Newton-Gradient Method for Constrained Root-Finding in Chemical Reaction Networks," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 404-427, January.
    3. Ariizumi, Shumpei & Yamakawa, Yuya & Yamashita, Nobuo, 2024. "Convergence properties of Levenberg–Marquardt methods with generalized regularization terms," Applied Mathematics and Computation, Elsevier, vol. 463(C).
    4. Seonho Park & Seung Hyun Jung & Panos M. Pardalos, 2020. "Combining Stochastic Adaptive Cubic Regularization with Negative Curvature for Nonconvex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 953-971, March.
    5. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    6. Liaoyuan Zeng & Ting Kei Pong, 2022. "$$\rho$$ ρ -regularization subproblems: strong duality and an eigensolver-based algorithm," Computational Optimization and Applications, Springer, vol. 81(2), pages 337-368, March.
    7. Fedor Stonyakin & Ilya Kuruzov & Boris Polyak, 2023. "Stopping Rules for Gradient Methods for Non-convex Problems with Additive Noise in Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 531-551, August.
    8. Yuquan Chen & Yunkang Sun & Bing Wang, 2023. "Improving the Performance of Optimization Algorithms Using the Adaptive Fixed-Time Scheme and Reset Scheme," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
    9. Weiwei Kong & Renato D. C. Monteiro, 2022. "Accelerated inexact composite gradient methods for nonconvex spectral optimization problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 673-715, July.
    10. Yurii Nesterov, 2021. "Superfast Second-Order Methods for Unconstrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 1-30, October.
    11. Jaroslav Fowkes & Nicholas Gould & Chris Farmer, 2013. "A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions," Journal of Global Optimization, Springer, vol. 56(4), pages 1791-1815, August.
    12. Nicholas I. M. Gould & Tyrone Rees & Jennifer A. Scott, 2019. "Convergence and evaluation-complexity analysis of a regularized tensor-Newton method for solving nonlinear least-squares problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 1-35, May.
    13. Maicon Marques Alves & Samara Costa Lima, 2017. "An Inexact Spingarn’s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 818-847, December.
    14. Nadav Hallak & Marc Teboulle, 2020. "Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 480-503, August.
    15. Francisco Facchinei & Vyacheslav Kungurtsev & Lorenzo Lampariello & Gesualdo Scutari, 2021. "Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 595-627, May.
    16. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.
    17. Sergey Guminov & Alexander Gasnikov & Ilya Kuruzov, 2023. "Accelerated methods for weakly-quasi-convex optimization problems," Computational Management Science, Springer, vol. 20(1), pages 1-19, December.
    18. Giovanni Fasano & Raffaele Pesenti, 2017. "Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 764-794, December.
    19. Jianlin Jiang & Su Zhang & Yibing Lv & Xin Du & Ziwei Yan, 2020. "An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge," Journal of Global Optimization, Springer, vol. 76(4), pages 793-818, April.
    20. Jiulin Wang & Mengmeng Song & Yong Xia, 2022. "On Local Nonglobal Minimum of Trust-Region Subproblem and Extension," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 707-722, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:76:y:2020:i:2:d:10.1007_s10589-020-00188-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.