IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i2d10.1007_s10898-016-0475-8.html
   My bibliography  Save this article

Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization

Author

Listed:
  • J. M. Martínez

    (University of Campinas)

  • M. Raydan

    (Universidad Simón Bolívar)

Abstract

In a recent paper, we introduced a trust-region method with variable norms for unconstrained minimization, we proved standard asymptotic convergence results, and we discussed the impact of this method in global optimization. Here we will show that, with a simple modification with respect to the sufficient descent condition and replacing the trust-region approach with a suitable cubic regularization, the complexity of this method for finding approximate first-order stationary points is $$O(\varepsilon ^{-3/2})$$ O ( ε - 3 / 2 ) . We also prove a complexity result with respect to second-order stationarity. Some numerical experiments are also presented to illustrate the effect of the modification on practical performance.

Suggested Citation

  • J. M. Martínez & M. Raydan, 2017. "Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization," Journal of Global Optimization, Springer, vol. 68(2), pages 367-385, June.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0475-8
    DOI: 10.1007/s10898-016-0475-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0475-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0475-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Birgin, Ernesto G. & Martínez, Jose Mario & Raydan, Marcos, 2014. "Spectral Projected Gradient Methods: Review and Perspectives," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i03).
    2. Sha Lu & Zengxin Wei & Lue Li, 2012. "A trust region algorithm with adaptive cubic regularization methods for nonsmooth convex minimization," Computational Optimization and Applications, Springer, vol. 51(2), pages 551-573, March.
    3. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    4. N. Gould & M. Porcelli & P. Toint, 2012. "Updating the regularization parameter in the adaptive cubic regularization algorithm," Computational Optimization and Applications, Springer, vol. 53(1), pages 1-22, September.
    5. Tommaso Bianconcini & Giampaolo Liuzzi & Benedetta Morini & Marco Sciandrone, 2015. "On the use of iterative methods in cubic regularization for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 35-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El Houcine Bergou & Youssef Diouane & Serge Gratton, 2018. "A Line-Search Algorithm Inspired by the Adaptive Cubic Regularization Framework and Complexity Analysis," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 885-913, September.
    2. E. G. Birgin & J. M. Martínez, 2019. "A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 707-753, July.
    3. J. M. Martínez & L. T. Santos, 2022. "On large-scale unconstrained optimization and arbitrary regularization," Computational Optimization and Applications, Springer, vol. 81(1), pages 1-30, January.
    4. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    5. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    6. C. P. Brás & J. M. Martínez & M. Raydan, 2020. "Large-scale unconstrained optimization using separable cubic modeling and matrix-free subspace minimization," Computational Optimization and Applications, Springer, vol. 75(1), pages 169-205, January.
    7. Geovani N. Grapiglia & Ekkehard W. Sachs, 2017. "On the worst-case evaluation complexity of non-monotone line search algorithms," Computational Optimization and Applications, Springer, vol. 68(3), pages 555-577, December.
    8. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    2. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    3. E. G. Birgin & J. M. Martínez, 2019. "A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 707-753, July.
    4. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    5. C. P. Brás & J. M. Martínez & M. Raydan, 2020. "Large-scale unconstrained optimization using separable cubic modeling and matrix-free subspace minimization," Computational Optimization and Applications, Springer, vol. 75(1), pages 169-205, January.
    6. Roberto Andreani & Marcos Raydan, 2021. "Properties of the delayed weighted gradient method," Computational Optimization and Applications, Springer, vol. 78(1), pages 167-180, January.
    7. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    8. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    9. N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.
    10. Pospíšil, Lukáš & Dostál, Zdeněk, 2018. "The projected Barzilai–Borwein method with fall-back for strictly convex QCQP problems with separable constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 145(C), pages 79-89.
    11. Nataša Krejić & Nataša Krklec Jerinkić, 2019. "Spectral projected gradient method for stochastic optimization," Journal of Global Optimization, Springer, vol. 73(1), pages 59-81, January.
    12. Na Zhao & Qingzhi Yang & Yajun Liu, 2017. "Computing the generalized eigenvalues of weakly symmetric tensors," Computational Optimization and Applications, Springer, vol. 66(2), pages 285-307, March.
    13. di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
    14. Wolfgang Schadner, 2021. "Feasible Implied Correlation Matrices from Factor Structures," Papers 2107.00427, arXiv.org.
    15. Marco Viola & Mara Sangiovanni & Gerardo Toraldo & Mario R. Guarracino, 2019. "Semi-supervised generalized eigenvalues classification," Annals of Operations Research, Springer, vol. 276(1), pages 249-266, May.
    16. Rujun Jiang & Man-Chung Yue & Zhishuo Zhou, 2021. "An accelerated first-order method with complexity analysis for solving cubic regularization subproblems," Computational Optimization and Applications, Springer, vol. 79(2), pages 471-506, June.
    17. Tommaso Bianconcini & Giampaolo Liuzzi & Benedetta Morini & Marco Sciandrone, 2015. "On the use of iterative methods in cubic regularization for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 35-57, January.
    18. Milagros Loreto & Hugo Aponte & Debora Cores & Marcos Raydan, 2017. "Nonsmooth spectral gradient methods for unconstrained optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 529-553, December.
    19. Elizabeth Karas & Sandra Santos & Benar Svaiter, 2015. "Algebraic rules for quadratic regularization of Newton’s method," Computational Optimization and Applications, Springer, vol. 60(2), pages 343-376, March.
    20. Geovani N. Grapiglia & Ekkehard W. Sachs, 2017. "On the worst-case evaluation complexity of non-monotone line search algorithms," Computational Optimization and Applications, Springer, vol. 68(3), pages 555-577, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0475-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.