IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v66y2017i2d10.1007_s10589-016-9865-6.html
   My bibliography  Save this article

Computing the generalized eigenvalues of weakly symmetric tensors

Author

Listed:
  • Na Zhao

    (Nankai University)

  • Qingzhi Yang

    (Nankai University)

  • Yajun Liu

    (Nankai University)

Abstract

Tensor is a hot topic in the past decade and eigenvalue problems of higher order tensors become more and more important in the numerical multilinear algebra. Several methods for finding the Z-eigenvalues and generalized eigenvalues of symmetric tensors have been given. However, the convergence of these methods when the tensor is not symmetric but weakly symmetric is not assured. In this paper, we give two convergent gradient projection methods for computing some generalized eigenvalues of weakly symmetric tensors. The gradient projection method with Armijo step-size rule (AGP) can be viewed as a modification of the GEAP method. The spectral gradient projection method which is born from the combination of the BB method with the gradient projection method is superior to the GEAP, AG and AGP methods. We also make comparisons among the four methods. Some competitive numerical results are reported at the end of this paper.

Suggested Citation

  • Na Zhao & Qingzhi Yang & Yajun Liu, 2017. "Computing the generalized eigenvalues of weakly symmetric tensors," Computational Optimization and Applications, Springer, vol. 66(2), pages 285-307, March.
  • Handle: RePEc:spr:coopap:v:66:y:2017:i:2:d:10.1007_s10589-016-9865-6
    DOI: 10.1007/s10589-016-9865-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-016-9865-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-016-9865-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Birgin, Ernesto G. & Martínez, Jose Mario & Raydan, Marcos, 2014. "Spectral Projected Gradient Methods: Review and Perspectives," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i03).
    2. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    3. Shenglong Hu & Guoyin Li & Liqun Qi & Yisheng Song, 2013. "Finding the Maximum Eigenvalue of Essentially Nonnegative Symmetric Tensors via Sum of Squares Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 717-738, September.
    4. Gaohang Yu & Zefeng Yu & Yi Xu & Yisheng Song & Yi Zhou, 2016. "An adaptive gradient method for computing generalized tensor eigenpairs," Computational Optimization and Applications, Springer, vol. 65(3), pages 781-797, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    2. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    3. Junhong Lin & Lorenzo Rosasco & Silvia Villa & Ding-Xuan Zhou, 2018. "Modified Fejér sequences and applications," Computational Optimization and Applications, Springer, vol. 71(1), pages 95-113, September.
    4. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    5. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    6. Roberto Andreani & Marcos Raydan, 2021. "Properties of the delayed weighted gradient method," Computational Optimization and Applications, Springer, vol. 78(1), pages 167-180, January.
    7. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
    8. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    9. Hedy Attouch & Alexandre Cabot & Zaki Chbani & Hassan Riahi, 2018. "Inertial Forward–Backward Algorithms with Perturbations: Application to Tikhonov Regularization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 1-36, October.
    10. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2020. "A Novel Forward-Backward Algorithm for Solving Convex Minimization Problem in Hilbert Spaces," Mathematics, MDPI, vol. 8(1), pages 1-13, January.
    12. Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
    13. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    14. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    15. N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.
    16. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    17. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
    18. Pospíšil, Lukáš & Dostál, Zdeněk, 2018. "The projected Barzilai–Borwein method with fall-back for strictly convex QCQP problems with separable constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 145(C), pages 79-89.
    19. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    20. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:66:y:2017:i:2:d:10.1007_s10589-016-9865-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.