IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v375y2020ics0096300320300540.html
   My bibliography  Save this article

A convex single image dehazing model via sparse dark channel prior

Author

Listed:
  • Wang, Yugang
  • Huang, Ting-Zhu
  • Zhao, Xi-Le
  • Deng, Liang-Jian
  • Ji, Teng-Yu

Abstract

In this paper, we present a convex model for single image dehazing via a sparse dark channel prior. Our work is based on an observation that the number of bright pixels is very small in the dark channel of a haze-free image, but significantly increases in that of a hazy image due to the existence of bright atmosphere light. Since the dehazing problem is inherently ambiguous, we first reformulate the degradation model of hazy images into an equivalent form where the transmission and the image variable are decoupled. With the above formulation and observation, we propose the convex model to recover the haze-free image whose dark channel is assumed to be sparse. The proposed objective function consists of four terms: a data-fitting term, an l1 regularization term for the dark channel of the haze-free image, and two total variation regularization terms for both the haze-free image and the transmission map. We develop an efficient alternating direction method of multipliers (ADMM) to tackle the proposed convex model. Extensive experiments on real hazy images illustrate that our method outperforms the state-of-the-art methods.

Suggested Citation

  • Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300540
    DOI: 10.1016/j.amc.2020.125085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320300540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Jing-Hua & Zhao, Xi-Le & Ji, Teng-Yu & Ma, Tian-Hui & Huang, Ting-Zhu, 2020. "Low-rank tensor train for tensor robust principal component analysis," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    2. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    2. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    3. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
    4. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    5. Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
    6. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    8. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    9. Anda Tang & Pei Quan & Lingfeng Niu & Yong Shi, 2022. "A Survey for Sparse Regularization Based Compression Methods," Annals of Data Science, Springer, vol. 9(4), pages 695-722, August.
    10. Christian Grussler & Pontus Giselsson, 2022. "Efficient Proximal Mapping Computation for Low-Rank Inducing Norms," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 168-194, January.
    11. Nguyen Hieu Thao, 2018. "A convergent relaxation of the Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 70(3), pages 841-863, July.
    12. Rodrigo Verschae & Takekazu Kato & Takashi Matsuyama, 2016. "Energy Management in Prosumer Communities: A Coordinated Approach," Energies, MDPI, vol. 9(7), pages 1-27, July.
    13. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.
    14. Na Zhao & Qingzhi Yang & Yajun Liu, 2017. "Computing the generalized eigenvalues of weakly symmetric tensors," Computational Optimization and Applications, Springer, vol. 66(2), pages 285-307, March.
    15. B. Abbas & H. Attouch & Benar F. Svaiter, 2014. "Newton-Like Dynamics and Forward-Backward Methods for Structured Monotone Inclusions in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 331-360, May.
    16. A. Chambolle & Ch. Dossal, 2015. "On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm”," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 968-982, September.
    17. Verschae, Rodrigo & Kawashima, Hiroaki & Kato, Takekazu & Matsuyama, Takashi, 2016. "Coordinated energy management for inter-community imbalance minimization," Renewable Energy, Elsevier, vol. 87(P2), pages 922-935.
    18. Philippe Mahey & Jonas Koko & Arnaud Lenoir, 2017. "Decomposition methods for a spatial model for long-term energy pricing problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 137-153, February.
    19. Pham Duy Khanh & Boris S. Mordukhovich & Vo Thanh Phat & Dat Ba Tran, 2023. "Generalized damped Newton algorithms in nonsmooth optimization via second-order subdifferentials," Journal of Global Optimization, Springer, vol. 86(1), pages 93-122, May.
    20. Minh Pham & Xiaodong Lin & Andrzej Ruszczyński & Yu Du, 2021. "An outer–inner linearization method for non-convex and nondifferentiable composite regularization problems," Journal of Global Optimization, Springer, vol. 81(1), pages 179-202, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s0096300320300540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.