IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v68y2017i1d10.1007_s10589-017-9909-6.html
   My bibliography  Save this article

Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators

Author

Listed:
  • Puya Latafat

    (KU Leuven
    IMT School for Advanced Studies Lucca)

  • Panagiotis Patrinos

    (KU Leuven)

Abstract

In this work we propose a new splitting technique, namely Asymmetric Forward–Backward–Adjoint splitting, for solving monotone inclusions involving three terms, a maximally monotone, a cocoercive and a bounded linear operator. Our scheme can not be recovered from existing operator splitting methods, while classical methods like Douglas–Rachford and Forward–Backward splitting are special cases of the new algorithm. Asymmetric preconditioning is the main feature of Asymmetric Forward–Backward–Adjoint splitting, that allows us to unify, extend and shed light on the connections between many seemingly unrelated primal-dual algorithms for solving structured convex optimization problems proposed in recent years. One important special case leads to a Douglas–Rachford type scheme that includes a third cocoercive operator.

Suggested Citation

  • Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
  • Handle: RePEc:spr:coopap:v:68:y:2017:i:1:d:10.1007_s10589-017-9909-6
    DOI: 10.1007/s10589-017-9909-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9909-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9909-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Min Li & Defeng Sun & Kim-Chuan Toh, 2015. "A Convergent 3-Block Semi-Proximal ADMM for Convex Minimization Problems with One Strongly Convex Block," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(04), pages 1-19.
    2. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    3. Laurent Condat, 2013. "A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 460-479, August.
    4. Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    2. Yonghong Yao & Abubakar Adamu & Yekini Shehu, 2024. "Forward–Reflected–Backward Splitting Algorithms with Momentum: Weak, Linear and Strong Convergence Results," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1364-1397, June.
    3. Yunus Atalan & Emirhan Hacıoğlu & Müzeyyen Ertürk & Faik Gürsoy & Gradimir V. Milovanović, 2024. "Novel algorithms based on forward-backward splitting technique: effective methods for regression and classification," Journal of Global Optimization, Springer, vol. 90(4), pages 869-890, December.
    4. Yekini Shehu & Lulu Liu & Qiao-Li Dong & Jen-Chih Yao, 2022. "A Relaxed Forward-Backward-Forward Algorithm with Alternated Inertial Step: Weak and Linear Convergence," Networks and Spatial Economics, Springer, vol. 22(4), pages 959-990, December.
    5. Yawei Shi & Liang Ran & Jialong Tang & Xiangzhao Wu, 2022. "Distributed Optimization Algorithm for Composite Optimization Problems with Non-Smooth Function," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    6. Ernest K. Ryu & Bằng Công Vũ, 2020. "Finding the Forward-Douglas–Rachford-Forward Method," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 858-876, March.
    7. Dong, Yunda, 2023. "A new splitting method for systems of monotone inclusions in Hilbert spaces," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 518-537.
    8. Dong, Yunda, 2024. "Extended splitting methods for systems of three-operator monotone inclusions with continuous operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 86-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    2. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    3. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    4. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    5. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    6. Patrick R. Johnstone & Pierre Moulin, 2017. "Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 67(2), pages 259-292, June.
    7. Ruoyu Sun & Zhi-Quan Luo & Yinyu Ye, 2020. "On the Efficiency of Random Permutation for ADMM and Coordinate Descent," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 233-271, February.
    8. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    9. Yaning Jiang & Deren Han & Xingju Cai, 2022. "An efficient partial parallel method with scaling step size strategy for three-block convex optimization problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 383-419, December.
    10. S. Bonettini & M. Prato & S. Rebegoldi, 2023. "A nested primal–dual FISTA-like scheme for composite convex optimization problems," Computational Optimization and Applications, Springer, vol. 84(1), pages 85-123, January.
    11. Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
    12. Wenli Huang & Yuchao Tang & Meng Wen & Haiyang Li, 2022. "Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm with Applications," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    13. Luis Briceño-Arias & Julio Deride & Cristian Vega, 2022. "Random Activations in Primal-Dual Splittings for Monotone Inclusions with a Priori Information," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 56-81, January.
    14. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
    15. Patrick R. Johnstone & Jonathan Eckstein, 2021. "Single-forward-step projective splitting: exploiting cocoercivity," Computational Optimization and Applications, Springer, vol. 78(1), pages 125-166, January.
    16. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    17. Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
    18. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    19. Junhong Lin & Lorenzo Rosasco & Silvia Villa & Ding-Xuan Zhou, 2018. "Modified Fejér sequences and applications," Computational Optimization and Applications, Springer, vol. 71(1), pages 95-113, September.
    20. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:68:y:2017:i:1:d:10.1007_s10589-017-9909-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.