IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v184y2020i3d10.1007_s10957-019-01601-z.html
   My bibliography  Save this article

Finding the Forward-Douglas–Rachford-Forward Method

Author

Listed:
  • Ernest K. Ryu

    (University of California)

  • Bằng Công Vũ

    (Vietnam National University)

Abstract

We consider the monotone inclusion problem with a sum of 3 operators, in which 2 are monotone and 1 is monotone-Lipschitz. The classical Douglas–Rachford and forward–backward–forward methods, respectively, solve the monotone inclusion problem with a sum of 2 monotone operators and a sum of 1 monotone and 1 monotone-Lipschitz operators. We first present a method that naturally combines Douglas–Rachford and forward–backward–forward and show that it solves the 3-operator problem under further assumptions, but fails in general. We then present a method that naturally combines Douglas–Rachford and forward–reflected–backward, a recently proposed alternative to forward–backward–forward by Malitsky and Tam (A forward–backward splitting method for monotone inclusions without cocoercivity, 2018. arXiv:1808.04162). We show that this second method solves the 3-operator problem generally, without further assumptions.

Suggested Citation

  • Ernest K. Ryu & Bằng Công Vũ, 2020. "Finding the Forward-Douglas–Rachford-Forward Method," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 858-876, March.
  • Handle: RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01601-z
    DOI: 10.1007/s10957-019-01601-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01601-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01601-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taylor, A. & Hendrickx, J. & Glineur, F., 2015. "Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods," LIDAM Discussion Papers CORE 2015013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Laurent Condat, 2013. "A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 460-479, August.
    3. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rieger, Janosch & Tam, Matthew K., 2020. "Backward-Forward-Reflected-Backward Splitting for Three Operator Monotone Inclusions," Applied Mathematics and Computation, Elsevier, vol. 381(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    2. Yawei Shi & Liang Ran & Jialong Tang & Xiangzhao Wu, 2022. "Distributed Optimization Algorithm for Composite Optimization Problems with Non-Smooth Function," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    3. Dong, Yunda, 2023. "A new splitting method for systems of monotone inclusions in Hilbert spaces," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 518-537.
    4. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    5. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    6. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    7. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Donghwan Kim & Jeffrey A. Fessler, 2021. "Optimizing the Efficiency of First-Order Methods for Decreasing the Gradient of Smooth Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 192-219, January.
    9. Cécile Bastidon & Myriam Bontonou & Pierre Borgnat & Pablo Jensen & Patrice Abry & Antoine Parent, 2024. "Learning smooth graphs with sparse temporal variations to explore long-term financial trends," Post-Print hal-04731912, HAL.
    10. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    11. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    12. Yekini Shehu & Lulu Liu & Qiao-Li Dong & Jen-Chih Yao, 2022. "A Relaxed Forward-Backward-Forward Algorithm with Alternated Inertial Step: Weak and Linear Convergence," Networks and Spatial Economics, Springer, vol. 22(4), pages 959-990, December.
    13. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    14. Fu, Penghui & Tan, Zhiqiang, 2024. "Block-wise primal-dual algorithms for large-scale doubly penalized ANOVA modeling," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    15. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    16. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    17. Luis Briceño-Arias & Sergio López Rivera, 2019. "A Projected Primal–Dual Method for Solving Constrained Monotone Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 907-924, March.
    18. Walaa M. Moursi & Lieven Vandenberghe, 2019. "Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 179-198, October.
    19. Patrick R. Johnstone & Pierre Moulin, 2017. "Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 67(2), pages 259-292, June.
    20. Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:184:y:2020:i:3:d:10.1007_s10957-019-01601-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.