Analysis of Optimization Algorithms via Sum-of-Squares
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-021-01869-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Taylor, A. & Hendrickx, J. & Glineur, F., 2015.
"Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods,"
LIDAM Discussion Papers CORE
2015013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Smooth strongly convex interpolation and exact worst-case performance of first-order methods," LIDAM Reprints CORE 2813, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018.
"Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization,"
Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
- Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact worst-case convergence rates of the proximal gradient method for composite convex minimization," LIDAM Reprints CORE 2975, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- DE KLERK, Etienne & GLINEUR, François & TAYLOR, Adrien B., 2016.
"On the Worst-case Complexity of the Gradient Method with Exact Line Search for Smooth Strongly Convex Functions,"
LIDAM Discussion Papers CORE
2016027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- de Klerk, Etienne & Glineur, Francois & Taylor, Adrien, 2017. "On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions," Other publications TiSEM 8cc0e8dd-b6cd-4f4f-9dcb-9, Tilburg University, School of Economics and Management.
- Etienne de Klerk & François Glineur & Adrien B. Taylor, 2017. "On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions," LIDAM Reprints CORE 2918, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
- David G. Luenberger & Yinyu Ye, 2016. "Linear and Nonlinear Programming," International Series in Operations Research and Management Science, Springer, edition 4, number 978-3-319-18842-3, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zabihinia Gerdroodbari, Yasin & Khorasany, Mohsen & Razzaghi, Reza & Heidari, Rahmat, 2024. "Management of prosumers using dynamic export limits and shared Community Energy Storage," Applied Energy, Elsevier, vol. 355(C).
- See, Justin & Cuaton, Ginbert Permejo & Placino, Pryor & Vunibola, Suliasi & Thi, Huong Do & Dombroski, Kelly & McKinnon, Katharine, 2024. "From absences to emergences: Foregrounding traditional and Indigenous climate change adaptation knowledges and practices from Fiji, Vietnam and the Philippines," World Development, Elsevier, vol. 176(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guoyong Gu & Junfeng Yang, 2024. "Tight Ergodic Sublinear Convergence Rate of the Relaxed Proximal Point Algorithm for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 373-387, July.
- Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018.
"Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization,"
Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
- Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact worst-case convergence rates of the proximal gradient method for composite convex minimization," LIDAM Reprints CORE 2975, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2022. "The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions," Other publications TiSEM 061688c6-f97c-4024-bb5b-1, Tilburg University, School of Economics and Management.
- Hadi Abbaszadehpeivasti & Etienne Klerk & Moslem Zamani, 2024. "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 475-496, July.
- André Uschmajew & Bart Vandereycken, 2022. "A Note on the Optimal Convergence Rate of Descent Methods with Fixed Step Sizes for Smooth Strongly Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 364-373, July.
- Donghwan Kim & Jeffrey A. Fessler, 2021. "Optimizing the Efficiency of First-Order Methods for Decreasing the Gradient of Smooth Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 192-219, January.
- Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
- Roland Hildebrand, 2021. "Optimal step length for the Newton method: case of self-concordant functions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 253-279, October.
- Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
- François Le Grand & Xavier Ragot, 2022.
"Managing Inequality Over Business Cycles: Optimal Policies With Heterogeneous Agents And Aggregate Shocks,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 511-540, February.
- xavier Ragot, 2019. "Managing Inequality over the Business Cycles: Optimal Policies with Heterogeneous Agents and Aggregate Shocks," 2019 Meeting Papers 1090, Society for Economic Dynamics.
- François Le Grand & Xavier Ragot, 2022. "Managing Inequality over Business Cycles: Optimal Policies with Heterogeneous Agents and Aggregate Shocks," Post-Print hal-03501381, HAL.
- François Le Grand & Xavier Ragot, 2022. "Managing Inequality over Business Cycles : Optimal Policies with Heterogeneous Agents and Aggregate Shocks," Post-Print hal-03601016, HAL.
- François Le Grand & Xavier Ragot, 2020. "Managing Inequality over Business Cycles: Optimal Policies with Heterogeneous Agents and Aggregate Shocks," SciencePo Working papers hal-03476095, HAL.
- François Le Grand & Xavier Ragot, 2020. "Managing Inequality over Business Cycles: Optimal Policies with Heterogeneous Agents and Aggregate Shocks," SciencePo Working papers Main hal-03476095, HAL.
- François Le Grand & Xavier Ragot, 2022. "Managing Inequality over Business Cycles: Optimal Policies with Heterogeneous Agents and Aggregate Shocks," SciencePo Working papers Main hal-03501381, HAL.
- François Le Grand & Xavier Ragot, 2020. "Managing Inequality over Business Cycles: Optimal Policies with Heterogeneous Agents and Aggregate Shocks," Working Papers hal-03476095, HAL.
- Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.
- Polyxeni-Margarita Kleniati & Panos Parpas & Berç Rustem, 2010. "Partitioning procedure for polynomial optimization," Journal of Global Optimization, Springer, vol. 48(4), pages 549-567, December.
- Laurent, M. & Rostalski, P., 2012. "The approach of moments for polynomial equations," Other publications TiSEM f08f3cd2-b83e-4bf1-9322-a, Tilburg University, School of Economics and Management.
- Jie Wang & Victor Magron, 2021. "Exploiting term sparsity in noncommutative polynomial optimization," Computational Optimization and Applications, Springer, vol. 80(2), pages 483-521, November.
- Tomohiko Mizutani & Makoto Yamashita, 2013. "Correlative sparsity structures and semidefinite relaxations for concave cost transportation problems with change of variables," Journal of Global Optimization, Springer, vol. 56(3), pages 1073-1100, July.
- Fook Wai Kong & Polyxeni-Margarita Kleniati & Berç Rustem, 2012. "Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 237-261, April.
- de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
- Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Michael K. McWilliam & Antariksh C. Dicholkar & Frederik Zahle & Taeseong Kim, 2022. "Post-Optimum Sensitivity Analysis with Automatically Tuned Numerical Gradients Applied to Swept Wind Turbine Blades," Energies, MDPI, vol. 15(9), pages 1-19, April.
More about this item
Keywords
Sum-of-squares; Semidefinite programming; Performance estimation problem;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:190:y:2021:i:1:d:10.1007_s10957-021-01869-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.