IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v207y2025i3d10.1007_s10957-025-02809-y.html
   My bibliography  Save this article

Intermediate Gradient Methods with Relative Inexactness

Author

Listed:
  • Nikita Kornilov

    (Moscow Institute of Physics and Technology
    Skolkovo Institute of Science and Technology)

  • Mohammad Alkousa

    (Innopolis University)

  • Eduard Gorbunov

    (Mohamed bin Zayed University of Artificial Intelligence)

  • Fedor Stonyakin

    (Moscow Institute of Physics and Technology
    Innopolis University
    V. Vernadsky Crimean Federal University)

  • Pavel Dvurechensky

    (Weierstrass Institute for Applied Analysis and Stochastics)

  • Alexander Gasnikov

    (Moscow Institute of Physics and Technology
    Innopolis University
    Steklov Mathematical Institute RAS)

Abstract

This paper is devoted to studying first-order methods for smooth convex optimization with inexact gradients. Unlike the majority of the literature on this topic, we consider the setting of relative rather than absolute inexactness. More precisely, we assume that the additive error in the gradient is proportional to the gradient norm, rather than being globally bounded by some small quantity. We propose a novel analysis of the accelerated gradient method under relative inexactness and strong convexity, improving the bound on the maximum admissible error that preserves the algorithm’s linear convergence. In other words, we analyze the robustness of the accelerated gradient method to relative gradient inexactness. Furthermore, using the Performance Estimation Problem (PEP) technique, we demonstrate that the obtained result is tight up to a numerical constant. Motivated by existing intermediate methods with absolute error, i.e., methods which convergence rates interpolate between the slower but more robust non-accelerated algorithms and the faster yet less robust accelerated algorithms, we propose an adaptive variant of the intermediate gradient method with relative gradient error.

Suggested Citation

  • Nikita Kornilov & Mohammad Alkousa & Eduard Gorbunov & Fedor Stonyakin & Pavel Dvurechensky & Alexander Gasnikov, 2025. "Intermediate Gradient Methods with Relative Inexactness," Journal of Optimization Theory and Applications, Springer, vol. 207(3), pages 1-42, December.
  • Handle: RePEc:spr:joptap:v:207:y:2025:i:3:d:10.1007_s10957-025-02809-y
    DOI: 10.1007/s10957-025-02809-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02809-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02809-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yurii Nesterov, 2018. "Lectures on Convex Optimization," Springer Optimization and Its Applications, Springer, edition 2, number 978-3-319-91578-4, January.
    2. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. DE KLERK, Etienne & GLINEUR, François & TAYLOR, Adrien B., 2016. "On the Worst-case Complexity of the Gradient Method with Exact Line Search for Smooth Strongly Convex Functions," LIDAM Discussion Papers CORE 2016027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Taylor, A. & Hendrickx, J. & Glineur, F., 2015. "Smooth Strongly Convex Interpolation and Exact Worst-case Performance of First-order Methods," LIDAM Discussion Papers CORE 2015013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Dmitriy Drusvyatskiy & Lin Xiao, 2023. "Stochastic Optimization with Decision-Dependent Distributions," Mathematics of Operations Research, INFORMS, vol. 48(2), pages 954-998, May.
    6. Pavel Dvurechensky & Alexander Gasnikov, 2016. "Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 121-145, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadi Abbaszadehpeivasti & Etienne Klerk & Moslem Zamani, 2024. "On the Rate of Convergence of the Difference-of-Convex Algorithm (DCA)," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 475-496, July.
    2. Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
    3. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    4. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    6. Leandro Farias Maia & David Huckleberry Gutman & Ryan Christopher Hughes, 2024. "The Inexact Cyclic Block Proximal Gradient Method and Properties of Inexact Proximal Maps," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 668-698, May.
    7. Alkousa, Mohammad & Stonyakin, Fedor & Gasnikov, Alexander & Abdo, Asmaa & Alcheikh, Mohammad, 2024. "Higher degree inexact model for optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    8. Roland Hildebrand, 2021. "Optimal step length for the Newton method: case of self-concordant functions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(2), pages 253-279, October.
    9. Abbaszadehpeivasti, Hadi & de Klerk, Etienne & Zamani, Moslem, 2022. "The exact worst-case convergence rate of the gradient method with fixed step lengths for L-smooth functions," Other publications TiSEM 061688c6-f97c-4024-bb5b-1, Tilburg University, School of Economics and Management.
    10. Liam Madden & Stephen Becker & Emiliano Dall’Anese, 2021. "Bounds for the Tracking Error of First-Order Online Optimization Methods," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 437-457, May.
    11. Tianxiao Sun & Ion Necoara & Quoc Tran-Dinh, 2020. "Composite convex optimization with global and local inexact oracles," Computational Optimization and Applications, Springer, vol. 76(1), pages 69-124, May.
    12. Eduard Gorbunov & Marina Danilova & Innokentiy Shibaev & Pavel Dvurechensky & Alexander Gasnikov, 2024. "High-Probability Complexity Bounds for Non-smooth Stochastic Convex Optimization with Heavy-Tailed Noise," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2679-2738, December.
    13. Guoyong Gu & Junfeng Yang, 2024. "Tight Ergodic Sublinear Convergence Rate of the Relaxed Proximal Point Algorithm for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 373-387, July.
    14. Shota Takahashi & Mituhiro Fukuda & Mirai Tanaka, 2022. "New Bregman proximal type algorithms for solving DC optimization problems," Computational Optimization and Applications, Springer, vol. 83(3), pages 893-931, December.
    15. Fu, Hao & Lam, William H.K. & Ma, Wei & Shi, Yuxin & Jiang, Rui & Sun, Huijun & Gao, Ziyou, 2025. "Modeling the residual queue and queue-dependent capacity in a static traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    16. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    17. Felipe Lara & Raúl T. Marcavillaca & Phan Tu Vuong, 2025. "Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions," Journal of Optimization Theory and Applications, Springer, vol. 206(3), pages 1-25, September.
    18. Masaru Ito, 2016. "New results on subgradient methods for strongly convex optimization problems with a unified analysis," Computational Optimization and Applications, Springer, vol. 65(1), pages 127-172, September.
    19. Xuexue Zhang & Sanyang Liu & Nannan Zhao, 2023. "An Extended Gradient Method for Smooth and Strongly Convex Functions," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    20. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:207:y:2025:i:3:d:10.1007_s10957-025-02809-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.