IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3135-d903784.html
   My bibliography  Save this article

Distributed Optimization Algorithm for Composite Optimization Problems with Non-Smooth Function

Author

Listed:
  • Yawei Shi

    (Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China)

  • Liang Ran

    (Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China)

  • Jialong Tang

    (Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China)

  • Xiangzhao Wu

    (Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China)

Abstract

This paper mainly studies the distributed optimization problems in a class of undirected networks. The objective function of the problem consists of a smooth convex function and a non-smooth convex function. Each agent in the network needs to optimize the sum of the two objective functions. For this kind of problem, based on the operator splitting method, this paper uses the proximal operator to deal with the non-smooth term and further designs a distributed algorithm that allows the use of uncoordinated step-sizes. At the same time, by introducing the random-block coordinate mechanism, this paper develops an asynchronous iterative version of the synchronous algorithm. Finally, the convergence of the algorithms is proven, and the effectiveness is verified through numerical simulations.

Suggested Citation

  • Yawei Shi & Liang Ran & Jialong Tang & Xiangzhao Wu, 2022. "Distributed Optimization Algorithm for Composite Optimization Problems with Non-Smooth Function," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3135-:d:903784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3135/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3135/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurent Condat, 2013. "A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms," Journal of Optimization Theory and Applications, Springer, vol. 158(2), pages 460-479, August.
    2. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunda Dong, 2021. "Weak convergence of an extended splitting method for monotone inclusions," Journal of Global Optimization, Springer, vol. 79(1), pages 257-277, January.
    2. Ernest K. Ryu & Bằng Công Vũ, 2020. "Finding the Forward-Douglas–Rachford-Forward Method," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 858-876, March.
    3. Dong, Yunda, 2023. "A new splitting method for systems of monotone inclusions in Hilbert spaces," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 518-537.
    4. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    5. Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
    6. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    7. Julian Rasch & Antonin Chambolle, 2020. "Inexact first-order primal–dual algorithms," Computational Optimization and Applications, Springer, vol. 76(2), pages 381-430, June.
    8. Yekini Shehu & Lulu Liu & Qiao-Li Dong & Jen-Chih Yao, 2022. "A Relaxed Forward-Backward-Forward Algorithm with Alternated Inertial Step: Weak and Linear Convergence," Networks and Spatial Economics, Springer, vol. 22(4), pages 959-990, December.
    9. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    10. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    11. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    12. Luis Briceño-Arias & Sergio López Rivera, 2019. "A Projected Primal–Dual Method for Solving Constrained Monotone Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 907-924, March.
    13. Walaa M. Moursi & Lieven Vandenberghe, 2019. "Douglas–Rachford Splitting for the Sum of a Lipschitz Continuous and a Strongly Monotone Operator," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 179-198, October.
    14. Patrick R. Johnstone & Pierre Moulin, 2017. "Local and global convergence of a general inertial proximal splitting scheme for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 67(2), pages 259-292, June.
    15. Adil Salim & Laurent Condat & Konstantin Mishchenko & Peter Richtárik, 2022. "Dualize, Split, Randomize: Toward Fast Nonsmooth Optimization Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 102-130, October.
    16. Luis Briceño-Arias & Fernando Roldán, 2023. "Primal-dual splittings as fixed point iterations in the range of linear operators," Journal of Global Optimization, Springer, vol. 85(4), pages 847-866, April.
    17. Daniel O’Connor & Lieven Vandenberghe, 2017. "Total variation image deblurring with space-varying kernel," Computational Optimization and Applications, Springer, vol. 67(3), pages 521-541, July.
    18. Eisuke Yamagata & Shunsuke Ono, 2023. "Sparse Index Tracking: Simultaneous Asset Selection and Capital Allocation via $\ell_0$-Constrained Portfolio," Papers 2309.10152, arXiv.org, revised Mar 2024.
    19. Boţ, Radu Ioan & Csetnek, Ernö Robert & Hendrich, Christopher, 2015. "Inertial Douglas–Rachford splitting for monotone inclusion problems," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 472-487.
    20. Quoc Tran-Dinh, 2019. "Proximal alternating penalty algorithms for nonsmooth constrained convex optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 1-43, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3135-:d:903784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.