IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i1d10.1007_s10957-025-02680-x.html
   My bibliography  Save this article

Convergence of the Chambolle–Pock Algorithm in the Absence of Monotonicity

Author

Listed:
  • Brecht Evens

    (KU Leuven)

  • Puya Latafat

    (IMT School for Advanced Studies Lucca)

  • Panagiotis Patrinos

    (KU Leuven)

Abstract

The Chambolle–Pock algorithm (CPA), also known as the primal-dual hybrid gradient method, has gained popularity over the last decade due to its success in solving large-scale convex structured problems. This work extends its convergence analysis for problems with varying degrees of (non)monotonicity, quantified through a so-called oblique weak Minty condition on the associated primal-dual operator. Our results reveal novel stepsize and relaxation parameter ranges which do not only depend on the norm of the linear mapping, but also on its other singular values. In particular, in nonmonotone settings, in addition to the classical stepsize conditions, extra bounds on the stepsizes and relaxation parameters are required. On the other hand, in the strongly monotone setting, the relaxation parameter is allowed to exceed the classical upper bound of two. Moreover, we build upon the recently introduced class of semimonotone operators, providing sufficient convergence conditions for CPA when the individual operators are semimonotone. Since this class of operators encompasses traditional operator classes including (hypo)- and co(hypo)-monotone operators, this analysis recovers and extends existing results for CPA. Tightness of the proposed stepsize ranges is demonstrated through several examples.

Suggested Citation

  • Brecht Evens & Puya Latafat & Panagiotis Patrinos, 2025. "Convergence of the Chambolle–Pock Algorithm in the Absence of Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-45, July.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:1:d:10.1007_s10957-025-02680-x
    DOI: 10.1007/s10957-025-02680-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02680-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02680-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:1:d:10.1007_s10957-025-02680-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.