IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v87y2024i1d10.1007_s10589-023-00520-0.html
   My bibliography  Save this article

Local convergence analysis of augmented Lagrangian method for nonlinear semidefinite programming

Author

Listed:
  • Shiwei Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Science)

  • Chao Ding

    (Chinese Academy of Sciences)

Abstract

The augmented Lagrangian method (ALM) has gained tremendous popularity for its elegant theory and impressive numerical performance since it was proposed by Hestenes and Powell in 1969. It has been widely used in numerous efficient solvers to improve numerical performance to solve many problems. In this paper, without requiring the uniqueness of multipliers, the local (asymptotic Q-superlinear) Q-linear convergence rate of the primal-dual sequences generated by ALM for the nonlinear semidefinite programming is established by assuming the second-order sufficient condition and the semi-isolated calmness of the Karush–Kuhn–Tucker solution under some mild conditions.

Suggested Citation

  • Shiwei Wang & Chao Ding, 2024. "Local convergence analysis of augmented Lagrangian method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 87(1), pages 39-81, January.
  • Handle: RePEc:spr:coopap:v:87:y:2024:i:1:d:10.1007_s10589-023-00520-0
    DOI: 10.1007/s10589-023-00520-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00520-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00520-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    2. Alexander Shapiro & Jie Sun, 2004. "Some Properties of the Augmented Lagrangian in Cone Constrained Optimization," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 479-491, August.
    3. Teemu Pennanen, 2002. "Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 170-191, February.
    4. Defeng Sun & Jie Sun, 2002. "Semismooth Matrix-Valued Functions," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 150-169, February.
    5. Defeng Sun, 2006. "The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 761-776, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Houduo Qi, 2009. "Local Duality of Nonlinear Semidefinite Programming," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 124-141, February.
    2. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    3. R. Tyrrell Rockafellar, 2023. "Generic linear convergence through metric subregularity in a variable-metric extension of the proximal point algorithm," Computational Optimization and Applications, Springer, vol. 86(3), pages 1327-1346, December.
    4. H. Luo & H. Wu & G. Chen, 2012. "On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming," Journal of Global Optimization, Springer, vol. 54(3), pages 599-618, November.
    5. Jianzhong Zhang & Liwei Zhang & Xiantao Xiao, 2010. "A Perturbation approach for an inverse quadratic programming problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 379-404, December.
    6. Yong-Jin Liu & Li Wang, 2016. "Properties associated with the epigraph of the $$l_1$$ l 1 norm function of projection onto the nonnegative orthant," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 205-221, August.
    7. J. Sun & L. W. Zhang & Y. Wu, 2006. "Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 437-456, June.
    8. Chengjin Li, 2014. "A New Approximation of the Matrix Rank Function and Its Application to Matrix Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 569-594, November.
    9. Qingna Li & Donghui Li & Houduo Qi, 2010. "Newton’s Method for Computing the Nearest Correlation Matrix with a Simple Upper Bound," Journal of Optimization Theory and Applications, Springer, vol. 147(3), pages 546-568, December.
    10. Francisco Aragón Artacho & Michaël Gaydu, 2012. "A Lyusternik–Graves theorem for the proximal point method," Computational Optimization and Applications, Springer, vol. 52(3), pages 785-803, July.
    11. Shaoyan Guo & Hou-Duo Qi & Liwei Zhang, 2023. "Perturbation analysis of the euclidean distance matrix optimization problem and its numerical implications," Computational Optimization and Applications, Springer, vol. 86(3), pages 1193-1227, December.
    12. Lingchen Kong & Levent Tunçel & Naihua Xiu, 2011. "Equivalent Conditions for Jacobian Nonsingularity in Linear Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 148(2), pages 364-389, February.
    13. Hezhi Luo & Huixian Wu & Jianzhen Liu, 2015. "On Saddle Points in Semidefinite Optimization via Separation Scheme," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 113-150, April.
    14. Shujun Bi & Le Han & Shaohua Pan, 2013. "Approximation of rank function and its application to the nearest low-rank correlation matrix," Journal of Global Optimization, Springer, vol. 57(4), pages 1113-1137, December.
    15. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    16. Liwei Zhang & Shengzhe Gao & Saoyan Guo, 2019. "Statistical Inference of Second-Order Cone Programming," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-17, April.
    17. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    18. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    19. Zhu, Daoli & Marcotte, Patrice, 1995. "Coupling the auxiliary problem principle with descent methods of pseudoconvex programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 670-685, June.
    20. M. L. Flegel & C. Kanzow, 2007. "Equivalence of Two Nondegeneracy Conditions for Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 381-397, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:87:y:2024:i:1:d:10.1007_s10589-023-00520-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.