IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v86y2023i3d10.1007_s10589-023-00494-z.html
   My bibliography  Save this article

Generic linear convergence through metric subregularity in a variable-metric extension of the proximal point algorithm

Author

Listed:
  • R. Tyrrell Rockafellar

    (University of Washington)

Abstract

The proximal point algorithm finds a zero of a maximal monotone mapping by iterations in which the mapping is made strongly monotone by the addition of a proximal term. Here it is articulated with the norm behind the proximal term possibly shifting from one iteration to the next, but under conditions that eventually make the metric settle down. Despite the varying geometry, the sequence generated by the algorithm is shown to converge to a particular solution. Although this is not the first variable-metric extension of proximal point algorithm, it is the first to retain the flexibility needed for applications to augmented Lagrangian methodology and progressive decoupling. Moreover, in a generic sense, the convergence it generates is Q-linear at a rate that depends in a simple way on the modulus of metric subregularity of the mapping at that solution. This is a tighter rate than previously identified and reveals for the first time the definitive role of metric subregularity in how the proximal point algorithm performs, even in fixed-metric mode.

Suggested Citation

  • R. Tyrrell Rockafellar, 2023. "Generic linear convergence through metric subregularity in a variable-metric extension of the proximal point algorithm," Computational Optimization and Applications, Springer, vol. 86(3), pages 1327-1346, December.
  • Handle: RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-023-00494-z
    DOI: 10.1007/s10589-023-00494-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00494-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00494-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar, 1976. "Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 97-116, May.
    2. Teemu Pennanen, 2002. "Local Convergence of the Proximal Point Algorithm and Multiplier Methods Without Monotonicity," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 170-191, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William W. Hager & R. Tyrrell Rockafellar & Vladimir M. Veliov, 2023. "Preface to Asen L. Dontchev Memorial Special Issue," Computational Optimization and Applications, Springer, vol. 86(3), pages 795-800, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Eckstein & Paulo Silva, 2010. "Proximal methods for nonlinear programming: double regularization and inexact subproblems," Computational Optimization and Applications, Springer, vol. 46(2), pages 279-304, June.
    2. Brecht Evens & Puya Latafat & Panagiotis Patrinos, 2025. "Convergence of the Chambolle–Pock Algorithm in the Absence of Monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-45, July.
    3. Shiwei Wang & Chao Ding, 2024. "Local convergence analysis of augmented Lagrangian method for nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 87(1), pages 39-81, January.
    4. Francisco Aragón Artacho & Michaël Gaydu, 2012. "A Lyusternik–Graves theorem for the proximal point method," Computational Optimization and Applications, Springer, vol. 52(3), pages 785-803, July.
    5. Jean-Pierre Crouzeix & Abdelhak Hassouni & Eladio Ocaña, 2023. "A Short Note on the Twice Differentiability of the Marginal Function of a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 857-867, August.
    6. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
    7. Xiaoming Yuan, 2011. "An improved proximal alternating direction method for monotone variational inequalities with separable structure," Computational Optimization and Applications, Springer, vol. 49(1), pages 17-29, May.
    8. Zhu, Daoli & Marcotte, Patrice, 1995. "Coupling the auxiliary problem principle with descent methods of pseudoconvex programming," European Journal of Operational Research, Elsevier, vol. 83(3), pages 670-685, June.
    9. Guo, Zhaomiao & Fan, Yueyue, 2017. "A Stochastic Multi-Agent Optimization Model for Energy Infrastructure Planning Under Uncertainty and Competition," Institute of Transportation Studies, Working Paper Series qt89s5s8hn, Institute of Transportation Studies, UC Davis.
    10. Paul Tseng, 2004. "An Analysis of the EM Algorithm and Entropy-Like Proximal Point Methods," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 27-44, February.
    11. R. S. Burachik & S. Scheimberg & B. F. Svaiter, 2001. "Robustness of the Hybrid Extragradient Proximal-Point Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 111(1), pages 117-136, October.
    12. A. F. Izmailov & M. V. Solodov, 2022. "Perturbed Augmented Lagrangian Method Framework with Applications to Proximal and Smoothed Variants," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 491-522, June.
    13. M. Kyono & M. Fukushima, 2000. "Nonlinear Proximal Decomposition Method for Convex Programming," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 357-372, August.
    14. Ya-Feng Liu & Xin Liu & Shiqian Ma, 2019. "On the Nonergodic Convergence Rate of an Inexact Augmented Lagrangian Framework for Composite Convex Programming," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 632-650, May.
    15. J. R. Birge & L. Qi & Z. Wei, 1998. "Convergence Analysis of Some Methods for Minimizing a Nonsmooth Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 97(2), pages 357-383, May.
    16. Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework II: general methods and numerical experiments," Computational Optimization and Applications, Springer, vol. 51(2), pages 681-708, March.
    17. Jonathan Eckstein, 2017. "A Simplified Form of Block-Iterative Operator Splitting and an Asynchronous Algorithm Resembling the Multi-Block Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 155-182, April.
    18. D. Russell Luke & Nguyen H. Thao & Matthew K. Tam, 2018. "Quantitative Convergence Analysis of Iterated Expansive, Set-Valued Mappings," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1143-1176, November.
    19. N. El Farouq & G. Cohen, 1998. "Progressive Regularization of Variational Inequalities and Decomposition Algorithms," Journal of Optimization Theory and Applications, Springer, vol. 97(2), pages 407-433, May.
    20. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:86:y:2023:i:3:d:10.1007_s10589-023-00494-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.