A cyclic block coordinate descent method with generalized gradient projections
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2016.04.031
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cornelio, Anastasia & Porta, Federica & Prato, Marco, 2015. "A convergent least-squares regularized blind deconvolution approach," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 173-186.
- Jonathan Eckstein, 1993. "Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 202-226, February.
- Paola Brianzi & Fabio Di Benedetto & Claudio Estatico, 2013. "Preconditioned iterative regularization in Banach spaces," Computational Optimization and Applications, Springer, vol. 54(2), pages 263-282, March.
- Patrick L. Combettes & Jean-Christophe Pesquet, 2011. "Proximal Splitting Methods in Signal Processing," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 185-212, Springer.
- Roberta De Asmundis & Daniela di Serafino & William Hager & Gerardo Toraldo & Hongchao Zhang, 2014. "An efficient gradient method using the Yuan steplength," Computational Optimization and Applications, Springer, vol. 59(3), pages 541-563, December.
- Cassioli, A. & Di Lorenzo, D. & Sciandrone, M., 2013. "On the convergence of inexact block coordinate descent methods for constrained optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 274-281.
- Clóvis Gonzaga & Ruana Schneider, 2016. "On the steepest descent algorithm for quadratic functions," Computational Optimization and Applications, Springer, vol. 63(2), pages 523-542, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
- V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
- E. G. Birgin & J. M. Martínez, 2022. "Block coordinate descent for smooth nonconvex constrained minimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 1-27, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
- di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
- E. Loli Piccolomini & V. L. Coli & E. Morotti & L. Zanni, 2018. "Reconstruction of 3D X-ray CT images from reduced sampling by a scaled gradient projection algorithm," Computational Optimization and Applications, Springer, vol. 71(1), pages 171-191, September.
- Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
- Cornelio, Anastasia & Porta, Federica & Prato, Marco, 2015. "A convergent least-squares regularized blind deconvolution approach," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 173-186.
- Yakui Huang & Yu-Hong Dai & Xin-Wei Liu & Hongchao Zhang, 2022. "On the acceleration of the Barzilai–Borwein method," Computational Optimization and Applications, Springer, vol. 81(3), pages 717-740, April.
- Masoud Fatemi, 2022. "On initial point selection of the steepest descent algorithm for general quadratic functions," Computational Optimization and Applications, Springer, vol. 82(2), pages 329-360, June.
- Crisci, Serena & Ruggiero, Valeria & Zanni, Luca, 2019. "Steplength selection in gradient projection methods for box-constrained quadratic programs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 312-327.
- Yu-Hong Dai & Yakui Huang & Xin-Wei Liu, 2019. "A family of spectral gradient methods for optimization," Computational Optimization and Applications, Springer, vol. 74(1), pages 43-65, September.
- Guillaume Sagnol & Edouard Pauwels, 2019. "An unexpected connection between Bayes A-optimal designs and the group lasso," Statistical Papers, Springer, vol. 60(2), pages 565-584, April.
- Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
- Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.
- Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
- Xin Jiang & Lieven Vandenberghe, 2022. "Bregman primal–dual first-order method and application to sparse semidefinite programming," Computational Optimization and Applications, Springer, vol. 81(1), pages 127-159, January.
- Sedi Bartz & Rubén Campoy & Hung M. Phan, 2022. "An Adaptive Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 1019-1055, December.
- Bingsheng He & Li-Zhi Liao & Xiang Wang, 2012. "Proximal-like contraction methods for monotone variational inequalities in a unified framework I: Effective quadruplet and primary methods," Computational Optimization and Applications, Springer, vol. 51(2), pages 649-679, March.
- J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020.
"A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem,"
Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
- J. Cruz Neto & P. Oliveira & Antoine Soubeyran & J. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Post-Print hal-01985336, HAL.
- Papa Quiroz, E.A. & Roberto Oliveira, P., 2012. "An extension of proximal methods for quasiconvex minimization on the nonnegative orthant," European Journal of Operational Research, Elsevier, vol. 216(1), pages 26-32.
- TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016.
"Exact worst-case performance of first-order methods for composite convex optimization,"
LIDAM Discussion Papers CORE
2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Adrien B. TAYLOR & Julien M. HENDRICKX & François GLINEUR, 2017. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Reprints CORE 2875, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Wang, Yugang & Huang, Ting-Zhu & Zhao, Xi-Le & Deng, Liang-Jian & Ji, Teng-Yu, 2020. "A convex single image dehazing model via sparse dark channel prior," Applied Mathematics and Computation, Elsevier, vol. 375(C).
More about this item
Keywords
Constrained optimization; Gradient projection methods; Alternating algorithms; Nonconvex optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:286:y:2016:i:c:p:288-300. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.