IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v91y2025i2d10.1007_s10589-024-00604-5.html
   My bibliography  Save this article

The indefinite proximal gradient method

Author

Listed:
  • Geoffroy Leconte

    (Polytechnique Montréal)

  • Dominique Orban

    (Polytechnique Montréal)

Abstract

We introduce a monotone and a non-monotone variant of the proximal gradient method in which the quadratic term is diagonal but may be indefinite, and is safeguarded by a trust region. Our method is a special case of the proximal quasi-Newton trust-region method of Aravkin et al. (SIAM J Optim 32(2):900–929, 2022). We provide closed-form solution of the step computation in certain cases where the nonsmooth term is separable and the trust region is defined in the infinity norm, so that no iterative subproblem solver is required. Our analysis expands upon that of (Aravkin et al. in SIAM J Optim 32(2):900–929, 2022) by generalizing the trust-region approach to problems with bound constraints. We provide an efficient open-source implementation of our method, named TRDH, in the Julia language in which Hessians approximations are given by diagonal quasi-Newton updates. TRDH evaluates one standard proximal operator and one indefinite proximal operator per iteration. We also analyze and implement a variant named iTRDH that performs a single indefinite proximal operator evaluation per iteration. We establish that iTRDH enjoys the same asymptotic worst-case iteration complexity as TRDH. We report numerical experience on unconstrained and bound-constrained problems, where TRDH and iTRDH are used both as standalone and subproblem solvers. Our results illustrate that, as standalone solvers, TRDH and iTRDH improve upon the quadratic regularization method R2 of (Aravkin et al. in SIAM J Optim 32(2):900–929, 2022) but also sometimes upon their quasi-Newton trust-region method, referred to here as TR-R2, in terms of smooth objective value and gradient evaluations. On challenging nonnegative matrix factorization, binary classification and data fitting problems, TRDH and iTRDH used as subproblem solvers inside TR improve upon TR-R2 for at least one choice of diagonal approximation and memory parameter.

Suggested Citation

  • Geoffroy Leconte & Dominique Orban, 2025. "The indefinite proximal gradient method," Computational Optimization and Applications, Springer, vol. 91(2), pages 861-903, June.
  • Handle: RePEc:spr:coopap:v:91:y:2025:i:2:d:10.1007_s10589-024-00604-5
    DOI: 10.1007/s10589-024-00604-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00604-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00604-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Birgin, Ernesto G. & Martínez, Jose Mario & Raydan, Marcos, 2014. "Spectral Projected Gradient Methods: Review and Perspectives," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i03).
    2. Christian Kanzow & Patrick Mehlitz, 2022. "Convergence Properties of Monotone and Nonmonotone Proximal Gradient Methods Revisited," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 624-646, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert J. Baraldi & Drew P. Kouri, 2025. "Efficient proximal subproblem solvers for a nonsmooth trust-region method," Computational Optimization and Applications, Springer, vol. 90(1), pages 193-226, January.
    2. Roberto Andreani & Marcos Raydan, 2021. "Properties of the delayed weighted gradient method," Computational Optimization and Applications, Springer, vol. 78(1), pages 167-180, January.
    3. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    4. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    5. N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.
    6. Pospíšil, Lukáš & Dostál, Zdeněk, 2018. "The projected Barzilai–Borwein method with fall-back for strictly convex QCQP problems with separable constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 145(C), pages 79-89.
    7. Behzad Azmi & Marco Bernreuther, 2025. "On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems," Computational Optimization and Applications, Springer, vol. 91(3), pages 1263-1308, July.
    8. Nataša Krejić & Nataša Krklec Jerinkić, 2019. "Spectral projected gradient method for stochastic optimization," Journal of Global Optimization, Springer, vol. 73(1), pages 59-81, January.
    9. Na Zhao & Qingzhi Yang & Yajun Liu, 2017. "Computing the generalized eigenvalues of weakly symmetric tensors," Computational Optimization and Applications, Springer, vol. 66(2), pages 285-307, March.
    10. Jing-jing Wang & Li-ping Tang & Xin-min Yang, 2024. "Spectral projected subgradient method with a 1-memory momentum term for constrained multiobjective optimization problem," Journal of Global Optimization, Springer, vol. 89(2), pages 277-302, June.
    11. Simeon vom Dahl & Christian Kanzow, 2024. "An inexact regularized proximal Newton method without line search," Computational Optimization and Applications, Springer, vol. 89(3), pages 585-624, December.
    12. J. M. Martínez & M. Raydan, 2017. "Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization," Journal of Global Optimization, Springer, vol. 68(2), pages 367-385, June.
    13. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    14. V. S. Amaral & R. Andreani & E. G. Birgin & D. S. Marcondes & J. M. Martínez, 2022. "On complexity and convergence of high-order coordinate descent algorithms for smooth nonconvex box-constrained minimization," Journal of Global Optimization, Springer, vol. 84(3), pages 527-561, November.
    15. di Serafino, Daniela & Ruggiero, Valeria & Toraldo, Gerardo & Zanni, Luca, 2018. "On the steplength selection in gradient methods for unconstrained optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 176-195.
    16. Wolfgang Schadner, 2021. "Feasible Implied Correlation Matrices from Factor Structures," Papers 2107.00427, arXiv.org.
    17. Marco Viola & Mara Sangiovanni & Gerardo Toraldo & Mario R. Guarracino, 2019. "Semi-supervised generalized eigenvalues classification," Annals of Operations Research, Springer, vol. 276(1), pages 249-266, May.
    18. Fortes, M.A. & Raydan, M. & Rodríguez, M.L. & Sajo-Castelli, A.M., 2024. "An assessment of numerical and geometrical quality of bases on surface fitting on Powell–Sabin triangulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 642-653.
    19. Milagros Loreto & Hugo Aponte & Debora Cores & Marcos Raydan, 2017. "Nonsmooth spectral gradient methods for unconstrained optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 529-553, December.
    20. Geovani N. Grapiglia & Ekkehard W. Sachs, 2017. "On the worst-case evaluation complexity of non-monotone line search algorithms," Computational Optimization and Applications, Springer, vol. 68(3), pages 555-577, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:91:y:2025:i:2:d:10.1007_s10589-024-00604-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.