IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i2d10.1007_s10898-023-01349-x.html
   My bibliography  Save this article

Spectral projected subgradient method with a 1-memory momentum term for constrained multiobjective optimization problem

Author

Listed:
  • Jing-jing Wang

    (Sichuan University)

  • Li-ping Tang

    (Chongqing Normal University)

  • Xin-min Yang

    (Chongqing Normal University)

Abstract

In this paper, we propose a spectral projected subgradient method with a 1-memory momentum term for solving constrained convex multiobjective optimization problem. This method combines the subgradient-type algorithm for multiobjective optimization problems with the idea of the spectral projected algorithm to accelerate the convergence process. Additionally, a 1-memory momentum term is added to the subgradient direction in the early iterations. The 1-memory momentum term incorporates, in the present iteration, some of the influence of the past iterations, and this can help to improve the search direction. Under suitable assumptions, we show that the sequence generated by the method converges to a weakly Pareto efficient solution and derive the sublinear convergence rates for the proposed method. Finally, computational experiments are given to demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Jing-jing Wang & Li-ping Tang & Xin-min Yang, 2024. "Spectral projected subgradient method with a 1-memory momentum term for constrained multiobjective optimization problem," Journal of Global Optimization, Springer, vol. 89(2), pages 277-302, June.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:2:d:10.1007_s10898-023-01349-x
    DOI: 10.1007/s10898-023-01349-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01349-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01349-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Birgin, Ernesto G. & Martínez, Jose Mario & Raydan, Marcos, 2014. "Spectral Projected Gradient Methods: Review and Perspectives," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i03).
    2. Ralph E. Steuer & Yue Qi & Markus Hirschberger, 2008. "Portfolio Selection in the Presence of Multiple Criteria," Springer Optimization and Its Applications, in: Constantin Zopounidis & Michael Doumpos & Panos M. Pardalos (ed.), Handbook of Financial Engineering, pages 3-24, Springer.
    3. White, D.J., 1998. "Epsilon-dominating solutions in mean-variance portfolio analysis," European Journal of Operational Research, Elsevier, vol. 105(3), pages 457-466, March.
    4. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    5. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingjie Hu & Liping Zhu & Yu Chen, 2024. "Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 88(1), pages 217-250, May.
    2. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    3. Robert J. Baraldi & Drew P. Kouri, 2025. "Efficient proximal subproblem solvers for a nonsmooth trust-region method," Computational Optimization and Applications, Springer, vol. 90(1), pages 193-226, January.
    4. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    5. Roberto Andreani & Marcos Raydan, 2021. "Properties of the delayed weighted gradient method," Computational Optimization and Applications, Springer, vol. 78(1), pages 167-180, January.
    6. Jamilu Yahaya & Poom Kumam & Mahmoud Muhammad Yahaya, 2025. "A New Hybrid Conjugate Gradient Method Based on a Convex Combination for Multiobjective Optimization," SN Operations Research Forum, Springer, vol. 6(2), pages 1-26, June.
    7. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    8. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    9. Florian Methling & Rüdiger Nitzsch, 2019. "Thematic portfolio optimization: challenging the core satellite approach," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 33(2), pages 133-154, June.
    10. O. Schütze & C. Hernández & E-G. Talbi & J. Q. Sun & Y. Naranjani & F.-R. Xiong, 2019. "Archivers for the representation of the set of approximate solutions for MOPs," Journal of Heuristics, Springer, vol. 25(1), pages 71-105, February.
    11. Shahabeddin Najafi & Masoud Hajarian, 2025. "A Globally Convergent Riemannian Memory Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-17, August.
    12. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    13. Masoud Rahiminezhad Galankashi & Farimah Mokhatab Rafiei & Maryam Ghezelbash, 2020. "Portfolio selection: a fuzzy-ANP approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-34, December.
    14. N. Krejić & E. H. M. Krulikovski & M. Raydan, 2023. "A Low-Cost Alternating Projection Approach for a Continuous Formulation of Convex and Cardinality Constrained Optimization," SN Operations Research Forum, Springer, vol. 4(4), pages 1-24, December.
    15. Pospíšil, Lukáš & Dostál, Zdeněk, 2018. "The projected Barzilai–Borwein method with fall-back for strictly convex QCQP problems with separable constraints," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 145(C), pages 79-89.
    16. Florian Methling & Rüdiger Nitzsch, 2020. "Tailor-made thematic portfolios: a core satellite optimization," Journal of Global Optimization, Springer, vol. 76(2), pages 317-331, February.
    17. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2011. "Portfolio Selection with Skewness: A Comparison and a Generalized Two Fund Separation Result," Working Papers 2011/09, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    18. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    19. Nataša Krejić & Nataša Krklec Jerinkić, 2019. "Spectral projected gradient method for stochastic optimization," Journal of Global Optimization, Springer, vol. 73(1), pages 59-81, January.
    20. Na Zhao & Qingzhi Yang & Yajun Liu, 2017. "Computing the generalized eigenvalues of weakly symmetric tensors," Computational Optimization and Applications, Springer, vol. 66(2), pages 285-307, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:2:d:10.1007_s10898-023-01349-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.