IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v86y2023i4d10.1007_s10898-023-01287-8.html
   My bibliography  Save this article

A new scheme for approximating the weakly efficient solution set of vector rational optimization problems

Author

Listed:
  • Feng Guo

    (Dalian University of Technology)

  • Liguo Jiao

    (Northeast Normal University
    Shanghai Zhangjiang Academy of Mathematics)

Abstract

In this paper, we provide a new scheme for approximating the weakly efficient solution set for a class of vector optimization problems with rational objectives over a feasible set defined by finitely many polynomial inequalities. More precisely, we present a procedure to obtain a sequence of explicit approximations of the weakly efficient solution set of the problem in question. Each approximation is the intersection of the sublevel set of a single polynomial and the feasible set. To this end, we make use of the achievement function associated with the considered problem and construct polynomial approximations of it over the feasible set from above. Remarkably, the construction can be converted to semidefinite programming problems. Several nontrivial examples are designed to illustrate the proposed new scheme.

Suggested Citation

  • Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
  • Handle: RePEc:spr:jglopt:v:86:y:2023:i:4:d:10.1007_s10898-023-01287-8
    DOI: 10.1007/s10898-023-01287-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01287-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01287-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan M. Borwein, 1983. "On the Existence of Pareto Efficient Points," Mathematics of Operations Research, INFORMS, vol. 8(1), pages 64-73, February.
    2. Metev, Boyan & Gueorguieva, Dessislava, 2000. "A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems," European Journal of Operational Research, Elsevier, vol. 126(2), pages 386-390, October.
    3. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Proximal gradient methods for multiobjective optimization and their applications," Computational Optimization and Applications, Springer, vol. 72(2), pages 339-361, March.
    4. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    5. Gorissen, B.L. & den Hertog, D., 2012. "Approximating the Pareto Set of Multiobjective Linear Programs via Robust Optimization," Other publications TiSEM 666c5307-4a4e-4be4-a0d0-b, Tilburg University, School of Economics and Management.
    6. C. Veeramani & S. A. Edalatpanah & S. Sharanya & Dragan PamuÄ ar, 2021. "Solving the Multiobjective Fractional Transportation Problem through the Neutrosophic Goal Programming Approach," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-17, August.
    7. N. T. T. Huong & J.-C. Yao & N. D. Yen, 2020. "Geoffrion’s proper efficiency in linear fractional vector optimization with unbounded constraint sets," Journal of Global Optimization, Springer, vol. 78(3), pages 545-562, November.
    8. Jonathan S. H. Kornbluth & Ralph E. Steuer, 1981. "Multiple Objective Linear Fractional Programming," Management Science, INFORMS, vol. 27(9), pages 1024-1039, September.
    9. Gutjahr, Walter J. & Nolz, Pamela C., 2016. "Multicriteria optimization in humanitarian aid," European Journal of Operational Research, Elsevier, vol. 252(2), pages 351-366.
    10. Jae Hyoung Lee & Liguo Jiao, 2018. "Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 428-455, February.
    11. Boaz Golany & Steven Hackman & Ury Passy, 2006. "An efficiency measurement framework for multi-stage production systems," Annals of Operations Research, Springer, vol. 145(1), pages 51-68, July.
    12. Xiaopeng Zhao & Markus A. Köbis & Yonghong Yao & Jen-Chih Yao, 2021. "A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 82-107, July.
    13. Mojtaba Borza & Azmin Sham Rambely, 2021. "A New Method to Solve Multi-Objective Linear Fractional Problems," Fuzzy Information and Engineering, Taylor & Francis Journals, vol. 13(3), pages 323-334, July.
    14. Gorissen, B.L. & den Hertog, D., 2012. "Approximating the Pareto Set of Multiobjective Linear Programs via Robust Optimization," Discussion Paper 2012-031, Tilburg University, Center for Economic Research.
    15. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    16. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    17. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.
    18. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.
    2. Yarui Duan & Liguo Jiao & Pengcheng Wu & Yuying Zhou, 2022. "Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 148-171, October.
    3. S. Morteza Mirdehghan & Hassan Rostamzadeh, 2016. "Finding the Efficiency Status and Efficient Projection in Multiobjective Linear Fractional Programming: A Linear Programming Technique," Journal of Optimization, Hindawi, vol. 2016, pages 1-8, September.
    4. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," ERIM Report Series Research in Management ERS-2004-033-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 49-71.
    6. João Costa & Maria Alves, 2013. "Enhancing computations of nondominated solutions in MOLFP via reference points," Journal of Global Optimization, Springer, vol. 57(3), pages 617-631, November.
    7. Dan A. Iancu & Nikolaos Trichakis, 2014. "Pareto Efficiency in Robust Optimization," Management Science, INFORMS, vol. 60(1), pages 130-147, January.
    8. Chergui, M. E-A & Moulai, M., 2007. "An exact method for a discrete multiobjective linear fractional optimization," MPRA Paper 12097, University Library of Munich, Germany, revised 09 Jan 2008.
    9. Birbil, S.I. & Frenk, J.B.G. & Zhang, S., 2004. "Generalized Fractional Programming With User Interaction," Econometric Institute Research Papers ERS-2004-033-LIS, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    11. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    12. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    13. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    14. H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
    15. Henk Kiers, 1995. "Maximization of sums of quotients of quadratic forms and some generalizations," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 221-245, June.
    16. Nergiz Kasimbeyli, 2015. "Existence and characterization theorems in nonconvex vector optimization," Journal of Global Optimization, Springer, vol. 62(1), pages 155-165, May.
    17. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    18. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    19. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    20. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:86:y:2023:i:4:d:10.1007_s10898-023-01287-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.