IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v33y2025i1d10.1007_s11750-024-00680-0.html
   My bibliography  Save this article

On the convergence analysis of a proximal gradient method for multiobjective optimization

Author

Listed:
  • Xiaopeng Zhao

    (Tiangong University)

  • Debdas Ghosh

    (Indian Institute of Technology (BHU))

  • Xiaolong Qin

    (Zhejiang Normal University)

  • Christiane Tammer

    (Martin-Luther-University Halle-Wittenberg)

  • Jen-Chih Yao

    (China Medical University
    Academy of Romanian Scientists)

Abstract

We propose a proximal gradient method for unconstrained nondifferentiable multiobjective optimization problems with the objective function being the sum of a proper lower semicontinuous convex function and a continuously differentiable function. We have shown under appropriate assumptions that each accumulation point of the sequence generated by the algorithm is Pareto stationary. Further, when imposing convexity on the smooth component of the objective function, the convergence of the generated iterative sequence to a weak Pareto optimal point of the problem is established. Meanwhile, the convergence rate of the proposed method is analyzed when the smooth component function in the objective function is non-convex ( $$\mathcal {O}(\sqrt{1/k})$$ O ( 1 / k ) ), convex ( $$\mathcal {O}(1/k)$$ O ( 1 / k ) ), and strongly convex ( $$\mathcal {O}(r^k)$$ O ( r k ) for some $$r\in (0,1)$$ r ∈ ( 0 , 1 ) ), respectively, here k is the number of iterations. The performance of the proposed method on a few test problems with an $$\ell _1$$ ℓ 1 -norm function and with the indicator function is provided.

Suggested Citation

  • Xiaopeng Zhao & Debdas Ghosh & Xiaolong Qin & Christiane Tammer & Jen-Chih Yao, 2025. "On the convergence analysis of a proximal gradient method for multiobjective optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(1), pages 102-132, April.
  • Handle: RePEc:spr:topjnl:v:33:y:2025:i:1:d:10.1007_s11750-024-00680-0
    DOI: 10.1007/s11750-024-00680-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-024-00680-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-024-00680-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Hartikainen & Kaisa Miettinen & Margaret Wiecek, 2012. "PAINT: Pareto front interpolation for nonlinear multiobjective optimization," Computational Optimization and Applications, Springer, vol. 52(3), pages 845-867, July.
    2. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Proximal gradient methods for multiobjective optimization and their applications," Computational Optimization and Applications, Springer, vol. 72(2), pages 339-361, March.
    3. Marina Baltar & Victor Abreu & Glaydston Ribeiro & Laura Bahiense, 2021. "Multi-objective model for the problem of locating tows for incident servicing on expressways," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 58-77, April.
    4. G. Bento & J. Cruz Neto & G. López & Antoine Soubeyran & J. Souza, 2018. "The Proximal Point Method for Locally Lipschitz Functions in Multiobjective Optimization with Application to the Compromise Problem," Post-Print hal-01985333, HAL.
    5. Alfredo N. Iusem & B. F. Svaiter & Marc Teboulle, 1994. "Entropy-Like Proximal Methods in Convex Programming," Mathematics of Operations Research, INFORMS, vol. 19(4), pages 790-814, November.
    6. Kanako Mita & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Nonmonotone line searches for unconstrained multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 75(1), pages 63-90, September.
    7. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    8. Leschine, Thomas M. & Wallenius, Hannele & Verdini, William A., 1992. "Interactive multiobjective analysis and assimilative capacity-based ocean disposal decisions," European Journal of Operational Research, Elsevier, vol. 56(2), pages 278-289, January.
    9. E. A. Papa Quiroz & S. Cruzado, 2022. "An inexact scalarization proximal point method for multiobjective quasiconvex minimization," Annals of Operations Research, Springer, vol. 316(2), pages 1445-1470, September.
    10. Yaohua Hu & Chong Li & Kaiwen Meng & Xiaoqi Yang, 2021. "Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 853-883, April.
    11. Xiaopeng Zhao & Markus A. Köbis & Yonghong Yao & Jen-Chih Yao, 2021. "A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 82-107, July.
    12. Uttarayan Bagchi, 1989. "Simultaneous Minimization of Mean and Variation of Flow Time and Waiting Time in Single Machine Systems," Operations Research, INFORMS, vol. 37(1), pages 118-125, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaopeng Zhao & Ravi Raushan & Debdas Ghosh & Jen-Chih Yao & Min Qi, 2025. "Proximal gradient method for convex multiobjective optimization problems without Lipschitz continuous gradients," Computational Optimization and Applications, Springer, vol. 91(1), pages 27-66, May.
    2. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.
    3. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    4. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    5. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    6. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    7. Alfredo N. Iusem & Jefferson G. Melo & Ray G. Serra, 2021. "A Strongly Convergent Proximal Point Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 183-200, July.
    8. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    9. Hiroki Tanabe & Ellen H. Fukuda & Nobuo Yamashita, 2023. "An accelerated proximal gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 86(2), pages 421-455, November.
    10. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    11. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    12. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    13. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    14. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    15. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    16. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    17. G. A. Carrizo & N. S. Fazzio & M. D. Sánchez & M. L. Schuverdt, 2024. "Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method," Computational Optimization and Applications, Springer, vol. 89(3), pages 769-803, December.
    18. Mustapha El Moudden & Ahmed El Ghali, 2018. "A new reduced gradient method for solving linearly constrained multiobjective optimization problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 719-741, December.
    19. Qingjie Hu & Liping Zhu & Yu Chen, 2024. "Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 88(1), pages 217-250, May.
    20. Qingjie Hu & Ruyun Li & Yanyan Zhang & Zhibin Zhu, 2024. "On the Extension of Dai-Liao Conjugate Gradient Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 810-843, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:33:y:2025:i:1:d:10.1007_s11750-024-00680-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.