IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v54y2013i3p473-493.html
   My bibliography  Save this article

Inexact projected gradient method for vector optimization

Author

Listed:
  • Ellen Fukuda
  • L. Graña Drummond

Abstract

In this work, we propose an inexact projected gradient-like method for solving smooth constrained vector optimization problems. In the unconstrained case, we retrieve the steepest descent method introduced by Graña Drummond and Svaiter. In the constrained setting, the method we present extends the exact one proposed by Graña Drummond and Iusem, since it admits relative errors on the search directions. At each iteration, a decrease of the objective value is obtained by means of an Armijo-like rule. The convergence results of this new method extend those obtained by Fukuda and Graña Drummond for the exact version. For partial orders induced by both pointed and nonpointed cones, under some reasonable hypotheses, global convergence to weakly efficient points of all sequences generated by the inexact projected gradient method is established for convex (respect to the ordering cone) objective functions. In the convergence analysis we also establish a connection between the so-called weighting method and the one we propose. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
  • Handle: RePEc:spr:coopap:v:54:y:2013:i:3:p:473-493
    DOI: 10.1007/s10589-012-9501-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9501-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9501-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2004. "General equilibrium analysis in ordered topological vector spaces," Journal of Mathematical Economics, Elsevier, vol. 40(3-4), pages 247-269, June.
    2. Aliprantis, C. D. & Florenzano, M. & Martins-da-Rocha, V. F. & Tourky, R., 2004. "Equilibrium analysis in financial markets with countably many securities," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 683-699, September.
    3. White, D.J., 1998. "Epsilon-dominating solutions in mean-variance portfolio analysis," European Journal of Operational Research, Elsevier, vol. 105(3), pages 457-466, March.
    4. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    5. Leschine, Thomas M. & Wallenius, Hannele & Verdini, William A., 1992. "Interactive multiobjective analysis and assimilative capacity-based ocean disposal decisions," European Journal of Operational Research, Elsevier, vol. 56(2), pages 278-289, January.
    6. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1992. "On the Minimization of Completion Time Variance with a Bicriteria Extension," Operations Research, INFORMS, vol. 40(6), pages 1148-1155, December.
    7. Yan Fu & Urmila Diwekar, 2004. "An Efficient Sampling Approach to Multiobjective Optimization," Annals of Operations Research, Springer, vol. 132(1), pages 109-134, November.
    8. repec:dau:papers:123456789/601 is not listed on IDEAS
    9. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    10. Uttarayan Bagchi, 1989. "Simultaneous Minimization of Mean and Variation of Flow Time and Waiting Time in Single Machine Systems," Operations Research, INFORMS, vol. 37(1), pages 118-125, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    2. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    3. G. C. Bento & J. X. Cruz Neto & P. S. M. Santos, 2013. "An Inexact Steepest Descent Method for Multicriteria Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 108-124, October.
    4. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    5. Bento, G.C. & Cruz Neto, J.X. & Oliveira, P.R. & Soubeyran, A., 2014. "The self regulation problem as an inexact steepest descent method for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 235(3), pages 494-502.
    6. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    7. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    8. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    9. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    10. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    11. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    12. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    13. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    14. Suyun Liu & Luis Nunes Vicente, 2023. "Convergence Rates of the Stochastic Alternating Algorithm for Bi-Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 165-186, July.
    15. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
    2. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    3. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    4. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    5. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    6. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    7. Xiaopeng Zhao & Markus A. Köbis & Yonghong Yao & Jen-Chih Yao, 2021. "A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 82-107, July.
    8. Roko Aliprantis & Monique Florenzano & Daniella Puzzello & Rabee Tourky, 2006. "The wedge of arbitrage free prices: anything goes," Cahiers de la Maison des Sciences Economiques b06070, Université Panthéon-Sorbonne (Paris 1).
    9. Cai, X., 1995. "Minimization of agreeably weighted variance in single machine systems," European Journal of Operational Research, Elsevier, vol. 85(3), pages 576-592, September.
    10. Aliprantis, Charalambos D. & Florenzano, Monique & Tourky, Rabee, 2006. "Production equilibria," Journal of Mathematical Economics, Elsevier, vol. 42(4-5), pages 406-421, August.
    11. Mosheiov, Gur, 2004. "Simultaneous minimization of total completion time and total deviation of job completion times," European Journal of Operational Research, Elsevier, vol. 157(2), pages 296-306, September.
    12. Charalambos D. Aliprantis & Monique Florenzano & Rabee Tourky, 2004. "Equilibria in production economies," Cahiers de la Maison des Sciences Economiques b04116, Université Panthéon-Sorbonne (Paris 1).
    13. Harold P. Benson & Serpil Sayin, 1997. "Towards finding global representations of the efficient set in multiple objective mathematical programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 47-67, February.
    14. Koulamas, Christos & Kyparisis, George J., 2023. "A classification of dynamic programming formulations for offline deterministic single-machine scheduling problems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 999-1017.
    15. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    16. C.T. Ng & X. Cai & T.C.E. Cheng, 1999. "Probabilistic analysis of an asymptotically optimal solution for the completion time variance problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 46(4), pages 373-398, June.
    17. Mosheiov, Gur, 2005. "Minimizing total completion time and total deviation of job completion times from a restrictive due-date," European Journal of Operational Research, Elsevier, vol. 165(1), pages 20-33, August.
    18. Cai, X. & Lum, V. Y. S. & Chan, J. M. T., 1997. "Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties," European Journal of Operational Research, Elsevier, vol. 98(1), pages 154-168, April.
    19. Mustapha El Moudden & Abdelkrim El Mouatasim, 2021. "Accelerated Diagonal Steepest Descent Method for Unconstrained Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 220-242, January.
    20. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:54:y:2013:i:3:p:473-493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.