IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0302441.html
   My bibliography  Save this article

Spectral-like conjugate gradient methods with sufficient descent property for vector optimization

Author

Listed:
  • Jamilu Yahaya
  • Poom Kumam
  • Sani Salisu
  • Kanokwan Sitthithakerngkiet

Abstract

Several conjugate gradient (CG) parameters resulted in promising methods for optimization problems. However, it turns out that some of these parameters, for example, ‘PRP,’ ‘HS,’ and ‘DL,’ do not guarantee sufficient descent of the search direction. In this work, we introduce new spectral-like CG methods that achieve sufficient descent property independently of any line search (LSE) and for arbitrary nonnegative CG parameters. We establish the global convergence of these methods for four different parameters using Wolfe LSE. Our algorithm achieves this without regular restart and assumption of convexity regarding the objective functions. The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. We conduct computational experiments to showcase the implementation and effectiveness of the proposed methods. The proposed spectral-like methods, namely nonnegative SPRP, SHZ, SDL, and SHS, exhibit superior performance based on their arrangement, outperforming HZ and SP methods in terms of the number of iterations, function evaluations, and gradient evaluations.

Suggested Citation

  • Jamilu Yahaya & Poom Kumam & Sani Salisu & Kanokwan Sitthithakerngkiet, 2024. "Spectral-like conjugate gradient methods with sufficient descent property for vector optimization," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-22, May.
  • Handle: RePEc:plo:pone00:0302441
    DOI: 10.1371/journal.pone.0302441
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302441
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0302441&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0302441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leschine, Thomas M. & Wallenius, Hannele & Verdini, William A., 1992. "Interactive multiobjective analysis and assimilative capacity-based ocean disposal decisions," European Journal of Operational Research, Elsevier, vol. 56(2), pages 278-289, January.
    2. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1992. "On the Minimization of Completion Time Variance with a Bicriteria Extension," Operations Research, INFORMS, vol. 40(6), pages 1148-1155, December.
    3. Nasiru Salihu & Poom Kumam & Aliyu Muhammed Awwal & Ibrahim Mohammed Sulaiman & Thidaporn Seangwattana, 2023. "The global convergence of spectral RMIL conjugate gradient method for unconstrained optimization with applications to robotic model and image recovery," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-19, March.
    4. J. Fliege & L. N. Vicente, 2006. "Multicriteria Approach to Bilevel Optimization," Journal of Optimization Theory and Applications, Springer, vol. 131(2), pages 209-225, November.
    5. C. Hillermeier, 2001. "Generalized Homotopy Approach to Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 110(3), pages 557-583, September.
    6. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    7. Gravel, Marc & Martel, Jean Marc & Nadeau, Raymond & Price, Wilson & Tremblay, Richard, 1992. "A multicriterion view of optimal resource allocation in job-shop production," European Journal of Operational Research, Elsevier, vol. 61(1-2), pages 230-244, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingjie Hu & Liping Zhu & Yu Chen, 2024. "Alternative extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 88(1), pages 217-250, May.
    2. Harold P. Benson & Serpil Sayin, 1997. "Towards finding global representations of the efficient set in multiple objective mathematical programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 47-67, February.
    3. Qingjie Hu & Ruyun Li & Yanyan Zhang & Zhibin Zhu, 2024. "On the Extension of Dai-Liao Conjugate Gradient Method for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 810-843, October.
    4. Jiawei Chen & Yushan Bai & Guolin Yu & Xiaoqing Ou & Xiaolong Qin, 2025. "A PRP Type Conjugate Gradient Method Without Truncation for Nonconvex Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 204(1), pages 1-30, January.
    5. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
    6. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    7. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    8. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    9. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    10. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    11. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    12. Qing-Rui He & Chun-Rong Chen & Sheng-Jie Li, 2023. "Spectral conjugate gradient methods for vector optimization problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 457-489, November.
    13. Qing-Rui He & Sheng-Jie Li & Bo-Ya Zhang & Chun-Rong Chen, 2024. "A family of conjugate gradient methods with guaranteed positiveness and descent for vector optimization," Computational Optimization and Applications, Springer, vol. 89(3), pages 805-842, December.
    14. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    15. G. Tohidi & H. Hassasi, 2018. "Adjacency‐based local top‐down search method for finding maximal efficient faces in multiple objective linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 203-217, April.
    16. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    17. X. Cai & F. S. Tu, 1996. "Scheduling jobs with random processing times on a single machine subject to stochastic breakdowns to minimize early‐tardy penalties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(8), pages 1127-1146, December.
    18. Mosheiov, Gur, 2005. "Minimizing total completion time and total deviation of job completion times from a restrictive due-date," European Journal of Operational Research, Elsevier, vol. 165(1), pages 20-33, August.
    19. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    20. Ng, C. T. & Cai, X. & Cheng, T. C. E., 1996. "A tight lower bound for the completion time variance problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 211-213, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0302441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.