The global convergence of spectral RMIL conjugate gradient method for unconstrained optimization with applications to robotic model and image recovery
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0281250
Download full text from publisher
References listed on IDEAS
- Dai, Zhifeng & Zhu, Haoyang & Zhang, Xinhua, 2022. "Dynamic spillover effects and portfolio strategies between crude oil, gold and Chinese stock markets related to new energy vehicle," Energy Economics, Elsevier, vol. 109(C).
- Zhifeng Dai & Tingyu Li & Mi Yang, 2022. "Forecasting stock return volatility: The role of shrinkage approaches in a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 980-996, August.
- Yousif, Osman Omer Osman, 2020. "The convergence properties of RMIL+ conjugate gradient method under the strong Wolfe line search," Applied Mathematics and Computation, Elsevier, vol. 367(C).
- Dai, Zhifeng, 2016. "Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 297-300.
- Neculai Andrei, 2020. "Nonlinear Conjugate Gradient Methods for Unconstrained Optimization," Springer Optimization and Its Applications, Springer, number 978-3-030-42950-8, December.
- Neculai Andrei, 2020. "General Convergence Results for Nonlinear Conjugate Gradient Methods," Springer Optimization and Its Applications, in: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, chapter 0, pages 89-123, Springer.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jamilu Yahaya & Poom Kumam & Sani Salisu & Kanokwan Sitthithakerngkiet, 2024. "Spectral-like conjugate gradient methods with sufficient descent property for vector optimization," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-22, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Nasiru Salihu & Poom Kumam & Aliyu Muhammed Awwal & Ibrahim Arzuka & Thidaporn Seangwattana, 2023. "A Structured Fletcher-Revees Spectral Conjugate Gradient Method for Unconstrained Optimization with Application in Robotic Model," SN Operations Research Forum, Springer, vol. 4(4), pages 1-25, December.
- Nguyen, Hoang & Virbickaitė, Audronė, 2023.
"Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models,"
Energy Economics, Elsevier, vol. 124(C).
- Nguyen, Hoang & Virbickaite, Audrone, 2022. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Working Papers 2022:5, Örebro University, School of Business.
- Dai, Zhifeng & Zhu, Haoyang, 2023. "Dynamic risk spillover among crude oil, economic policy uncertainty and Chinese financial sectors," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 421-450.
- Wumei Sun & Hongwei Liu & Zexian Liu, 2021. "A Class of Accelerated Subspace Minimization Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 811-840, September.
- Dai, Zhifeng & Peng, Yongxin, 2022. "Economic policy uncertainty and stock market sector time-varying spillover effect: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Zexian Liu & Yan Ni & Hongwei Liu & Wumei Sun, 2024. "A New Subspace Minimization Conjugate Gradient Method for Unconstrained Minimization," Journal of Optimization Theory and Applications, Springer, vol. 200(2), pages 820-851, February.
- Chen, Kangming & Fukuda, Ellen Hidemi & Sato, Hiroyuki, 2025. "Nonlinear conjugate gradient method for vector optimization on Riemannian manifolds with retraction and vector transport," Applied Mathematics and Computation, Elsevier, vol. 486(C).
- Salihu, Nasiru & Kumam, Poom & Sulaiman, Ibrahim Mohammed & Arzuka, Ibrahim & Kumam, Wiyada, 2024. "An efficient Newton-like conjugate gradient method with restart strategy and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 354-372.
- Abubakar, Auwal Bala & Kumam, Poom & Malik, Maulana & Ibrahim, Abdulkarim Hassan, 2022. "A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 640-657.
- Dai, Zhifeng & Zhang, Xiaotong & Yin, Zhujia, 2023. "Extreme time-varying spillovers between high carbon emission stocks, green bond and crude oil: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 118(C).
- Dai, Zhifeng & Zhang, Xiaotong, 2023. "Climate policy uncertainty and risks taken by the bank: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Tiantian Zhao & Wei Hong Yang, 2023. "A Nonlinear Conjugate Gradient Method Using Inexact First-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 502-530, August.
- Qingxiang Han & Mengxi He & Yaojie Zhang & Muhammad Umar, 2023. "Default return spread: A powerful predictor of crude oil price returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1786-1804, November.
- George Baravdish & Gabriel Eilertsen & Rym Jaroudi & B. Tomas Johansson & Lukáš Malý & Jonas Unger, 2024. "A Hybrid Sobolev Gradient Method for Learning NODEs," SN Operations Research Forum, Springer, vol. 5(4), pages 1-39, December.
- Zetty Zahureen Mohd Yusoff & Nur Zahidah Bahrudin & Ani Wilujeng Suryani, 2023. "Monetary Policy, Macroeconomic and Anomalies Interactions Post COVID in Developed and Eastern European Stock Markets," Information Management and Business Review, AMH International, vol. 15(3), pages 470-479.
- Lee, Hsiang-Tai, 2022. "Regime-switching angular correlation diversification," Finance Research Letters, Elsevier, vol. 50(C).
- Saulius Jokubaitis & Remigijus Leipus, 2022. "Asymptotic Normality in Linear Regression with Approximately Sparse Structure," Mathematics, MDPI, vol. 10(10), pages 1-28, May.
- Yuan, Xianghui & Li, Xiang, 2022. "Delta-hedging demand and intraday momentum: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
- Festus Victor Bekun & Abdulkareem Alhassan & Ilhan Ozturk & Obadiah Jonathan Gimba, 2022. "Explosivity and Time-Varying Granger Causality: Evidence from the Bubble Contagion Effect of COVID-19-Induced Uncertainty on Manufacturing Job Postings in the United States," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
- Chai, Li & Wang, Yuqi & Qi, Xiaohong, 2024. "Cross-category connectedness between Shanghai crude oil futures and Chinese stock markets related to the Belt and Road Initiative," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0281250. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.