IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v201y2022icp640-657.html
   My bibliography  Save this article

A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems

Author

Listed:
  • Abubakar, Auwal Bala
  • Kumam, Poom
  • Malik, Maulana
  • Ibrahim, Abdulkarim Hassan

Abstract

In this article, we propose a hybrid conjugate gradient (CG) scheme for solving unconstrained optimization problem. The search direction is a combination of the Polak–Ribière–Polyak (PRP) and the Liu–Storey (LS) CG parameters and is close to the direction of the memoryless Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton scheme. Without the use of the line search, the search direction satisfies the descent condition and possesses the trust region property. The global convergence of the scheme for general functions under the Wolfe-type and Armijo-type line search is established. Numerical experiments are carried out on some benchmark test problems and the results show that the propose scheme is more efficient than other existing schemes. Finally, a practical application of the scheme in motion control of robot manipulator is also presented.

Suggested Citation

  • Abubakar, Auwal Bala & Kumam, Poom & Malik, Maulana & Ibrahim, Abdulkarim Hassan, 2022. "A hybrid conjugate gradient based approach for solving unconstrained optimization and motion control problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 640-657.
  • Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:640-657
    DOI: 10.1016/j.matcom.2021.05.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421002214
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.05.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David F. Shanno, 1978. "Conjugate Gradient Methods with Inexact Searches," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 244-256, August.
    2. Zexian Liu & Hongwei Liu & Yu-Hong Dai, 2020. "An improved Dai–Kou conjugate gradient algorithm for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 75(1), pages 145-167, January.
    3. Min Sun & Jing Liu & Yaru Wang, 2020. "Two Improved Conjugate Gradient Methods with Application in Compressive Sensing and Motion Control," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, May.
    4. Neculai Andrei, 2020. "Nonlinear Conjugate Gradient Methods for Unconstrained Optimization," Springer Optimization and Its Applications, Springer, number 978-3-030-42950-8, September.
    5. Neculai Andrei, 2020. "General Convergence Results for Nonlinear Conjugate Gradient Methods," Springer Optimization and Its Applications, in: Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, chapter 0, pages 89-123, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mrad, Hatem & Fakhari, Seyyed Mojtaba, 2024. "Optimization of unconstrained problems using a developed algorithm of spectral conjugate gradient method calculation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 282-290.
    2. Jing, Shaoxue, 2023. "Time-delay Hammerstein system identification using modified cross-correlation method and variable stacking length multi-error algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 288-300.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wumei Sun & Hongwei Liu & Zexian Liu, 2021. "A Class of Accelerated Subspace Minimization Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 811-840, September.
    2. Tiantian Zhao & Wei Hong Yang, 2023. "A Nonlinear Conjugate Gradient Method Using Inexact First-Order Information," Journal of Optimization Theory and Applications, Springer, vol. 198(2), pages 502-530, August.
    3. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    4. Fischer, Manfred M. & Staufer, Petra, 1998. "Optimization in an Error Backpropagation Neural Network Environment with a Performance Test on a Pattern Classification Problem," MPRA Paper 77810, University Library of Munich, Germany.
    5. Ke-Lin Du & Chi-Sing Leung & Wai Ho Mow & M. N. S. Swamy, 2022. "Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era," Mathematics, MDPI, vol. 10(24), pages 1-46, December.
    6. N. Mahdavi-Amiri & M. Shaeiri, 2020. "A conjugate gradient sampling method for nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 73-90, March.
    7. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.
    8. Hanif D. Sherali & Churlzu Lim, 2007. "Enhancing Lagrangian Dual Optimization for Linear Programs by Obviating Nondifferentiability," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 3-13, February.
    9. Chi-Cheong Chris Wong & Man-Chung Chan & Chi-Chung Lam, 2000. "Financial Time Series Forecasting By Neural Network Using Conjugate Gradient Learning Algorithm And Multiple Linear Regression Weight Initialization," Computing in Economics and Finance 2000 61, Society for Computational Economics.
    10. Saman Babaie-Kafaki, 2012. "A note on the global convergence theorem of the scaled conjugate gradient algorithms proposed by Andrei," Computational Optimization and Applications, Springer, vol. 52(2), pages 409-414, June.
    11. Churlzu Lim & Hanif Sherali & Stan Uryasev, 2010. "Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization," Computational Optimization and Applications, Springer, vol. 46(3), pages 391-415, July.
    12. B. Sellami & Y. Chaib, 2016. "A new family of globally convergent conjugate gradient methods," Annals of Operations Research, Springer, vol. 241(1), pages 497-513, June.
    13. Neculai Andrei, 2013. "Another Conjugate Gradient Algorithm with Guaranteed Descent and Conjugacy Conditions for Large-scale Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 159-182, October.
    14. Shummin Nakayama & Yasushi Narushima & Hiroshi Yabe, 2021. "Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 79(1), pages 127-154, May.
    15. David Ek & Anders Forsgren, 2021. "Exact linesearch limited-memory quasi-Newton methods for minimizing a quadratic function," Computational Optimization and Applications, Springer, vol. 79(3), pages 789-816, July.
    16. T. L. Jensen & M. Diehl, 2017. "An Approach for Analyzing the Global Rate of Convergence of Quasi-Newton and Truncated-Newton Methods," Journal of Optimization Theory and Applications, Springer, vol. 172(1), pages 206-221, January.
    17. Dongyi Liu & Genqi Xu, 2013. "Symmetric Perry conjugate gradient method," Computational Optimization and Applications, Springer, vol. 56(2), pages 317-341, October.
    18. Vladimir Rakočević & Milena J. Petrović, 2022. "Comparative Analysis of Accelerated Models for Solving Unconstrained Optimization Problems with Application of Khan’s Hybrid Rule," Mathematics, MDPI, vol. 10(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:640-657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.