IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i2d10.1007_s10957-025-02711-7.html
   My bibliography  Save this article

An Inertial Three-term Derivative-free Projection Algorithm for Nonlinear Equations without Pseudo-monotonicity

Author

Listed:
  • Xiaoyu Wu

    (Jiangsu Center for Applied Mathematics, China University of Mining and Technology)

  • Hu Shao

    (Jiangsu Center for Applied Mathematics, China University of Mining and Technology)

  • Pengjie Liu

    (Jiangsu Center for Applied Mathematics, China University of Mining and Technology)

  • Feng Shao

    (Jiangsu Center for Applied Mathematics, China University of Mining and Technology)

Abstract

In this paper, we focus on developing a general form of inertial iterative method for the system of unconstrained nonlinear equations, which has extensive and practical applications. Combining the inertial step and projection technique, a family of three-term conjugate gradient projection method is proposed for finding the approximate solution of nonlinear equations. The search direction is modified based on the scaled memoryless BFGS formula, satisfying the sufficient descent property. Our methods are suitable for large-scale equations since they are low storage memory and derivative-free. Moreover, we analyze the global convergence of the proposed method without the monotonicity or pseudo-monotonicity as well as the Lipschitz continuity hypothesis of the system of nonlinear equations. Additionally, the numerical experiments on nonlinear equations and applications on compressed sensing problems are conducted to verify the effectiveness of our methods.

Suggested Citation

  • Xiaoyu Wu & Hu Shao & Pengjie Liu & Feng Shao, 2025. "An Inertial Three-term Derivative-free Projection Algorithm for Nonlinear Equations without Pseudo-monotonicity," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-30, August.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02711-7
    DOI: 10.1007/s10957-025-02711-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02711-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02711-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonglin Yuan & Zehong Meng & Yong Li, 2016. "A Modified Hestenes and Stiefel Conjugate Gradient Algorithm for Large-Scale Nonsmooth Minimizations and Nonlinear Equations," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 129-152, January.
    2. Predrag S. Stanimirović & Branislav Ivanov & Snežana Djordjević & Ivona Brajević, 2018. "New Hybrid Conjugate Gradient and Broyden–Fletcher–Goldfarb–Shanno Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 860-884, September.
    3. David F. Shanno, 1978. "Conjugate Gradient Methods with Inexact Searches," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 244-256, August.
    4. Jamilu Abubakar & Poom Kumam & Habib ur Rehman & Abdulkarim Hassan Ibrahim, 2020. "Inertial Iterative Schemes with Variable Step Sizes for Variational Inequality Problem Involving Pseudomonotone Operator," Mathematics, MDPI, vol. 8(4), pages 1-25, April.
    5. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
    6. Abubakar, Auwal Bala & Kumam, Poom & Ibrahim, Abdulkarim Hassan & Chaipunya, Parin & Rano, Sadiya Ali, 2022. "New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 670-683.
    7. Xiaoyu Wu & Hu Shao & Pengjie Liu & Yue Zhuo, 2023. "An Inertial Spectral CG Projection Method Based on the Memoryless BFGS Update," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1130-1155, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyu Wu & Hu Shao & Pengjie Liu & Yue Zhuo, 2023. "An Inertial Spectral CG Projection Method Based on the Memoryless BFGS Update," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1130-1155, September.
    2. Yasushi Narushima & Shummin Nakayama & Masashi Takemura & Hiroshi Yabe, 2023. "Memoryless Quasi-Newton Methods Based on the Spectral-Scaling Broyden Family for Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 639-664, May.
    3. Zhong-bao Wang & Xue Chen & Jiang Yi & Zhang-you Chen, 2022. "Inertial projection and contraction algorithms with larger step sizes for solving quasimonotone variational inequalities," Journal of Global Optimization, Springer, vol. 82(3), pages 499-522, March.
    4. Churlzu Lim & Hanif Sherali & Stan Uryasev, 2010. "Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization," Computational Optimization and Applications, Springer, vol. 46(3), pages 391-415, July.
    5. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram & Ravina Sharma, 2023. "A Conjugate Gradient Method: Quantum Spectral Polak–Ribiére–Polyak Approach for Unconstrained Optimization Problems," Mathematics, MDPI, vol. 11(23), pages 1-14, December.
    6. Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Salem Mahdi & Ali Wagdy Mohamed, 2022. "A Hybrid Stochastic Deterministic Algorithm for Solving Unconstrained Optimization Problems," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    7. Xiaoliang Wang & Liping Pang & Qi Wu & Mingkun Zhang, 2021. "An Adaptive Proximal Bundle Method with Inexact Oracles for a Class of Nonconvex and Nonsmooth Composite Optimization," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    8. Fischer, Manfred M. & Staufer, Petra, 1998. "Optimization in an Error Backpropagation Neural Network Environment with a Performance Test on a Pattern Classification Problem," MPRA Paper 77810, University Library of Munich, Germany.
    9. Qi Tian & Xiaoliang Wang & Liping Pang & Mingkun Zhang & Fanyun Meng, 2021. "A New Hybrid Three-Term Conjugate Gradient Algorithm for Large-Scale Unconstrained Problems," Mathematics, MDPI, vol. 9(12), pages 1-13, June.
    10. Zhu, Zhibin & Zhang, Dongdong & Wang, Shuo, 2020. "Two modified DY conjugate gradient methods for unconstrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    11. Gonglin Yuan & Zhou Sheng & Wenjie Liu, 2016. "The Modified HZ Conjugate Gradient Algorithm for Large-Scale Nonsmooth Optimization," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-15, October.
    12. B. Sellami & Y. Chaib, 2016. "A new family of globally convergent conjugate gradient methods," Annals of Operations Research, Springer, vol. 241(1), pages 497-513, June.
    13. Yong Li & Gonglin Yuan & Zhou Sheng, 2018. "An active-set algorithm for solving large-scale nonsmooth optimization models with box constraints," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-16, January.
    14. XiaoLiang Dong & Deren Han & Zhifeng Dai & Lixiang Li & Jianguang Zhu, 2018. "An Accelerated Three-Term Conjugate Gradient Method with Sufficient Descent Condition and Conjugacy Condition," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 944-961, December.
    15. Neculai Andrei, 2013. "Another Conjugate Gradient Algorithm with Guaranteed Descent and Conjugacy Conditions for Large-scale Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 159-182, October.
    16. Morteza Kimiaei & Farzad Rahpeymaii, 2019. "A new nonmonotone line-search trust-region approach for nonlinear systems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 199-232, July.
    17. Ke-Lin Du & Chi-Sing Leung & Wai Ho Mow & M. N. S. Swamy, 2022. "Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era," Mathematics, MDPI, vol. 10(24), pages 1-46, December.
    18. Shummin Nakayama & Yasushi Narushima & Hiroshi Yabe, 2021. "Inexact proximal memoryless quasi-Newton methods based on the Broyden family for minimizing composite functions," Computational Optimization and Applications, Springer, vol. 79(1), pages 127-154, May.
    19. Pengjie Liu & Linhao Li & Hu Shao & Meixing Liu & Jiaxu Fan, 2025. "An Inertial-type CG Projection Method with Restart for Pseudo-monotone Costs with Application to Traffic Assignment," Networks and Spatial Economics, Springer, vol. 25(1), pages 147-172, March.
    20. Gonglin Yuan & Xiaoliang Wang & Zhou Sheng, 2020. "The Projection Technique for Two Open Problems of Unconstrained Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 590-619, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02711-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.