IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v201y2022icp670-683.html
   My bibliography  Save this article

New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications

Author

Listed:
  • Abubakar, Auwal Bala
  • Kumam, Poom
  • Ibrahim, Abdulkarim Hassan
  • Chaipunya, Parin
  • Rano, Sadiya Ali

Abstract

In this paper, we present a new hybrid spectral-conjugate gradient (SCG) algorithm for finding approximate solutions to nonlinear monotone operator equations. The hybrid conjugate gradient parameter has the Polak–Ribière–Polyak (PRP), Dai–Yuan (DY), Hestenes–Stiefel (HS) and Fletcher–Reeves (FR) as special cases. Moreover, the spectral parameter is selected such that the search direction has the descent property. Also, the search directions are bounded and the sequence of iterates generated by the new hybrid algorithm converge globally. Furthermore, numerical experiments were conducted on some benchmark nonlinear monotone operator equations to assess the efficiency of the proposed algorithm. Finally, the algorithm is shown to have the ability to recover disturbed signals.

Suggested Citation

  • Abubakar, Auwal Bala & Kumam, Poom & Ibrahim, Abdulkarim Hassan & Chaipunya, Parin & Rano, Sadiya Ali, 2022. "New hybrid three-term spectral-conjugate gradient method for finding solutions of nonlinear monotone operator equations with applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 670-683.
  • Handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:670-683
    DOI: 10.1016/j.matcom.2021.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847542100255X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    2. Berry, Michael W. & Browne, Murray & Langville, Amy N. & Pauca, V. Paul & Plemmons, Robert J., 2007. "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 155-173, September.
    3. Auwal Bala Abubakar & Poom Kumam & Hassan Mohammad & Aliyu Muhammed Awwal & Kanokwan Sitthithakerngkiet, 2019. "A Modified Fletcher–Reeves Conjugate Gradient Method for Monotone Nonlinear Equations with Some Applications," Mathematics, MDPI, vol. 7(8), pages 1-25, August.
    4. Auwal Bala Abubakar & Kanikar Muangchoo & Auwal Muhammad & Abdulkarim Hassan Ibrahim, 2020. "A Spectral Gradient Projection Method for Sparse Signal Reconstruction in Compressive Sensing," Modern Applied Science, Canadian Center of Science and Education, vol. 14(5), pages 1-86, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing, Shaoxue, 2023. "Time-delay Hammerstein system identification using modified cross-correlation method and variable stacking length multi-error algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 288-300.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    2. Yuan, Xianghui & Li, Xiang, 2022. "Delta-hedging demand and intraday momentum: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    3. Jianfei Cao & Han Yang & Jianshu Lv & Quanyuan Wu & Baolei Zhang, 2023. "Estimating Soil Salinity with Different Levels of Vegetation Cover by Using Hyperspectral and Non-Negative Matrix Factorization Algorithm," IJERPH, MDPI, vol. 20(4), pages 1-15, February.
    4. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    5. Andrej Čopar & Blaž Zupan & Marinka Zitnik, 2019. "Fast optimization of non-negative matrix tri-factorization," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-15, June.
    6. Shanika L Wickramasuriya & Berwin A Turlach & Rob J Hyndman, 2019. "Optimal Non-negative Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 15/19, Monash University, Department of Econometrics and Business Statistics.
    7. Lei Zhu & Fernando Soldevila & Claudio Moretti & Alexandra d’Arco & Antoine Boniface & Xiaopeng Shao & Hilton B. Aguiar & Sylvain Gigan, 2022. "Large field-of-view non-invasive imaging through scattering layers using fluctuating random illumination," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    8. Yoshi Fujiwara & Rubaiyat Islam, 2021. "Bitcoin's Crypto Flow Network," Papers 2106.11446, arXiv.org, revised Jul 2021.
    9. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
    10. Immanuel Bomze & Werner Schachinger & Gabriele Uchida, 2012. "Think co(mpletely)positive ! Matrix properties, examples and a clustered bibliography on copositive optimization," Journal of Global Optimization, Springer, vol. 52(3), pages 423-445, March.
    11. Hiroyasu Abe & Hiroshi Yadohisa, 2019. "Orthogonal nonnegative matrix tri-factorization based on Tweedie distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 825-853, December.
    12. GILLIS, Nicolas & GLINEUR, François, 2010. "On the geometric interpretation of the nonnegative rank," LIDAM Discussion Papers CORE 2010051, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    14. Dai, Zhifeng & Zhu, Huan & Kang, Jie, 2021. "New technical indicators and stock returns predictability," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 127-142.
    15. Guowei Yang & Lin Zhang & Minghua Wan, 2022. "Exponential Graph Regularized Non-Negative Low-Rank Factorization for Robust Latent Representation," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    16. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    17. GILLIS, Nicolas & GLINEUR, François, 2010. "A multilevel approach for nonnegative matrix factorization," LIDAM Discussion Papers CORE 2010047, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
    19. N. Venkata Sailaja & L. Padma Sree & N. Mangathayaru, 2018. "New Rough Set-Aided Mechanism for Text Categorisation," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-19, June.
    20. Soodabeh Asadi & Janez Povh, 2021. "A Block Coordinate Descent-Based Projected Gradient Algorithm for Orthogonal Non-Negative Matrix Factorization," Mathematics, MDPI, vol. 9(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:201:y:2022:i:c:p:670-683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.