A Spectral Method for Identifiable Grade of Membership Analysis with Binary Responses
Author
Abstract
Suggested Citation
DOI: 10.1007/s11336-024-09951-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Yunxiao & Ying, Zhiliang & Zhang, Haoran, 2021. "Unfolding-model-based visualization: theory, method and applications," LSE Research Online Documents on Economics 108876, London School of Economics and Political Science, LSE Library.
- Berry, Michael W. & Browne, Murray & Langville, Amy N. & Pauca, V. Paul & Plemmons, Robert J., 2007. "Algorithms and applications for approximate nonnegative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 155-173, September.
- John Horn, 1965. "A rationale and test for the number of factors in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 30(2), pages 179-185, June.
- Haoran Zhang & Yunxiao Chen & Xiaoou Li, 2020. "A Note on Exploratory Item Factor Analysis by Singular Value Decomposition," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 358-372, June.
- Artur Pokropek, 2016. "Grade of Membership Response Time Model for Detecting Guessing Behaviors," Journal of Educational and Behavioral Statistics, , vol. 41(3), pages 300-325, June.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
- Zhang, Haoran & Chen, Yunxiao & Li, Xiaoou, 2020. "A note on exploratory item factor analysis by singular value decomposition," LSE Research Online Documents on Economics 104166, London School of Economics and Political Science, LSE Library.
- Daniel Manrique-Vallier & Jerome P. Reiter, 2012. "Estimating Identification Disclosure Risk Using Mixed Membership Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1385-1394, December.
- Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2019. "Joint Maximum Likelihood Estimation for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 124-146, March.
- Yunxiao Chen & Xiaoou Li & Siliang Zhang, 2020. "Structured Latent Factor Analysis for Large-scale Data: Identifiability, Estimability, and Their Implications," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1756-1770, December.
- Elena Erosheva, 2005. "Comparing Latent Structures of the Grade of Membership, Rasch, and Latent Class Models," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 619-628, December.
- Xueyu Mao & Purnamrita Sarkar & Deepayan Chakrabarti, 2021. "Estimating Mixed Memberships With Sharp Eigenvector Deviations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1928-1940, October.
- Edgar Dobriban & Art B. Owen, 2019. "Deterministic parallel analysis: an improved method for selecting factors and principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(1), pages 163-183, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Yunxiao & Li, Xiaoou, 2022. "Determining the number of factors in high-dimensional generalized latent factor models," LSE Research Online Documents on Economics 111574, London School of Economics and Political Science, LSE Library.
- April E. Cho & Jiaying Xiao & Chun Wang & Gongjun Xu, 2024. "Regularized Variational Estimation for Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 89(1), pages 347-375, March.
- Xinyi Liu & Gabriel Wallin & Yunxiao Chen & Irini Moustaki, 2023. "Rotation to Sparse Loadings Using $$L^p$$ L p Losses and Related Inference Problems," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 527-553, June.
- Liu, Xinyi Lin & Wallin, Gabriel & Chen, Yunxiao & Moustaki, Irini, 2023. "Rotation to sparse loadings using Lp losses and related inference problems," LSE Research Online Documents on Economics 118349, London School of Economics and Political Science, LSE Library.
- Siliang Zhang & Yunxiao Chen, 2022. "Computation for Latent Variable Model Estimation: A Unified Stochastic Proximal Framework," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1473-1502, December.
- Zhang, Siliang & Chen, Yunxiao, 2022. "Computation for latent variable model estimation: a unified stochastic proximal framework," LSE Research Online Documents on Economics 114489, London School of Economics and Political Science, LSE Library.
- Y Chen & X Li, 2022. "Determining the number of factors in high-dimensional generalized latent factor models [Eigenvalue ratio test for the number of factors]," Biometrika, Biometrika Trust, vol. 109(3), pages 769-782.
- Christopher J. Urban & Daniel J. Bauer, 2021. "A Deep Learning Algorithm for High-Dimensional Exploratory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 1-29, March.
- Chenchen Ma & Jing Ouyang & Chun Wang & Gongjun Xu, 2024. "A Note on Improving Variational Estimation for Multidimensional Item Response Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(1), pages 172-204, March.
- Chen, Yunxiao & Li, Xiaoou, 2024. "A note on entrywise consistency for mixed-data matrix completion," LSE Research Online Documents on Economics 124682, London School of Economics and Political Science, LSE Library.
- Alexander Robitzsch, 2023. "Linking Error in the 2PL Model," J, MDPI, vol. 6(1), pages 1-27, January.
- Yinqiu He & Zi Wang & Gongjun Xu, 2021. "A Note on the Likelihood Ratio Test in High-Dimensional Exploratory Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 442-463, June.
- Shaw, Amy & Elizondo, Fabian & Wadlington, Patrick L., 2020. "Reasoning, fast and slow: How noncognitive factors may alter the ability-speed relationship," Intelligence, Elsevier, vol. 83(C).
- Leeb, William, 2021. "A note on identifiability conditions in confirmatory factor analysis," Statistics & Probability Letters, Elsevier, vol. 178(C).
- Chon, Sora, 2020. "International Inflation Synchronization and Implications," KDI Journal of Economic Policy, Korea Development Institute (KDI), vol. 42(2), pages 57-84.
- Jens Jirschitzka & Aileen Oeberst & Richard Göllner & Ulrike Cress, 2017. "Inter-rater reliability and validity of peer reviews in an interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(2), pages 1059-1092, November.
- Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
- Mumtaz, Haroon & Theodoridis, Konstantinos, 2017.
"Common and country specific economic uncertainty,"
Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
- Haroon Mumtaz & Konstantinos Theodoridis, 2015. "Common and Country Specific Economic Uncertainty," Working Papers 752, Queen Mary University of London, School of Economics and Finance.
- Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
- Maria Lidia Mascia & Mirian Agus & Łukasz Tomczyk & Natale Salvatore Bonfiglio & Diego Bellini & Maria Pietronilla Penna, 2023. "Smartphone Distraction: Italian Validation of the Smartphone Distraction Scale (SDS)," IJERPH, MDPI, vol. 20(15), pages 1-15, August.
More about this item
Keywords
grade of membership model; identifiability; latent variable model; mixed membership model; successive projection algorithm; singular value decomposition; spectral method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:89:y:2024:i:2:d:10.1007_s11336-024-09951-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.