IDEAS home Printed from
   My bibliography  Save this article

Estimating Identification Disclosure Risk Using Mixed Membership Models


  • Daniel Manrique-Vallier
  • Jerome P. Reiter


Statistical agencies and other organizations that disseminate data are obligated to protect data subjects’ confidentiality. For example, ill-intentioned individuals might link data subjects to records in other databases by matching on common characteristics (keys). Successful links are particularly problematic for data subjects with combinations of keys that are unique in the population. Hence, as part of their assessments of disclosure risks, many data stewards estimate the probabilities that sample uniques on sets of discrete keys are also population uniques on those keys. This is typically done using log-linear modeling on the keys. However, log-linear models can yield biased estimates of cell probabilities for sparse contingency tables with many zero counts, which often occurs in databases with many keys. This bias can result in unreliable estimates of probabilities of uniqueness and, hence, misrepresentations of disclosure risks. We propose an alternative to log-linear models for datasets with sparse keys based on a Bayesian version of grade of membership (GoM) models. We present a Bayesian GoM model for multinomial variables and offer a Markov chain Monte Carlo algorithm for fitting the model. We evaluate the approach by treating data from a recent U.S. Census Bureau public use microdata sample as a population, taking simple random samples from that population, and benchmarking estimated probabilities of uniqueness against population values. Compared to log-linear models, GoM models provide more accurate estimates of the total number of uniques in the samples. Additionally, they offer record-level predictions of uniqueness that dominate those based on log-linear models. This article has online supplementary materials.

Suggested Citation

  • Daniel Manrique-Vallier & Jerome P. Reiter, 2012. "Estimating Identification Disclosure Risk Using Mixed Membership Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1385-1394, December.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1385-1394 DOI: 10.1080/01621459.2012.710508

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Maindonald, John, 2006. "Generalized Additive Models: An Introduction with R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(b03).
    2. Nikolay Nenovsky & S. Statev, 2006. "Introduction," Post-Print halshs-00260898, HAL.
    3. Jianqing Fan, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying-coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731.
    4. H rdle, Wolfgang & Huet, Sylvie & Mammen, Enno & Sperlich, Stefan, 2004. "Bootstrap Inference In Semiparametric Generalized Additive Models," Econometric Theory, Cambridge University Press, vol. 20(02), pages 265-300, April.
    5. Jing Wang & Lijian Yang, 2009. "Efficient and fast spline-backfitted kernel smoothing of additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 663-690, September.
    6. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, March.
    7. Osmani, R.S., 1990. "Food Deprivation and Undernutrition in Rural Bangladesh," Research Paper 82, World Institute for Development Economics Research.
    8. Gerda Claeskens & Tatyana Krivobokova & Jean D. Opsomer, 2009. "Asymptotic properties of penalized spline estimators," Biometrika, Biometrika Trust, vol. 96(3), pages 529-544.
    9. Haerdle,Wolfgang & Bowman,Adrian, 1986. "Bootstrapping in nonparametric regression: Local adaptive smoothing and confidence bands," Discussion Paper Serie A 71, University of Bonn, Germany.
    10. M. Ruth & K. Donaghy & P. Kirshen, 2006. "Introduction," Chapters,in: Regional Climate Change and Variability, chapter 1 Edward Elgar Publishing.
    11. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, March.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1385-1394. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.