IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i500p1385-1394.html
   My bibliography  Save this article

Estimating Identification Disclosure Risk Using Mixed Membership Models

Author

Listed:
  • Daniel Manrique-Vallier
  • Jerome P. Reiter

Abstract

Statistical agencies and other organizations that disseminate data are obligated to protect data subjects’ confidentiality. For example, ill-intentioned individuals might link data subjects to records in other databases by matching on common characteristics (keys). Successful links are particularly problematic for data subjects with combinations of keys that are unique in the population. Hence, as part of their assessments of disclosure risks, many data stewards estimate the probabilities that sample uniques on sets of discrete keys are also population uniques on those keys. This is typically done using log-linear modeling on the keys. However, log-linear models can yield biased estimates of cell probabilities for sparse contingency tables with many zero counts, which often occurs in databases with many keys. This bias can result in unreliable estimates of probabilities of uniqueness and, hence, misrepresentations of disclosure risks. We propose an alternative to log-linear models for datasets with sparse keys based on a Bayesian version of grade of membership (GoM) models. We present a Bayesian GoM model for multinomial variables and offer a Markov chain Monte Carlo algorithm for fitting the model. We evaluate the approach by treating data from a recent U.S. Census Bureau public use microdata sample as a population, taking simple random samples from that population, and benchmarking estimated probabilities of uniqueness against population values. Compared to log-linear models, GoM models provide more accurate estimates of the total number of uniques in the samples. Additionally, they offer record-level predictions of uniqueness that dominate those based on log-linear models. This article has online supplementary materials.

Suggested Citation

  • Daniel Manrique-Vallier & Jerome P. Reiter, 2012. "Estimating Identification Disclosure Risk Using Mixed Membership Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1385-1394, December.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1385-1394
    DOI: 10.1080/01621459.2012.710508
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.710508
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.710508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camerlenghi, Federico & Favaro, Stefano & Naulet, Zacharie & Panero, Francesca, 2021. "Optimal disclosure risk assessment," LSE Research Online Documents on Economics 117304, London School of Economics and Political Science, LSE Library.
    2. Cinzia Carota & Maurizio Filippone & Silvia Polettini, 2022. "Assessing Bayesian Semi‐Parametric Log‐Linear Models: An Application to Disclosure Risk Estimation," International Statistical Review, International Statistical Institute, vol. 90(1), pages 165-183, April.
    3. Favaro, Stefano & Panero, Francesca & Rigon, Tommaso, 2021. "Bayesian nonparametric disclosure risk assessment," LSE Research Online Documents on Economics 117305, London School of Economics and Political Science, LSE Library.
    4. Shlomo, Natalie & Skinner, Chris, 2022. "Measuring risk of re-identification in microdata: state-of-the art and new directions," LSE Research Online Documents on Economics 117168, London School of Economics and Political Science, LSE Library.
    5. Natalie Shlomo & Chris Skinner, 2022. "Measuring risk of re‐identification in microdata: State‐of‐the art and new directions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1644-1662, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1385-1394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.