IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v44y1997i1p47-67.html
   My bibliography  Save this article

Towards finding global representations of the efficient set in multiple objective mathematical programming

Author

Listed:
  • Harold P. Benson
  • Serpil Sayin

Abstract

We propose and justify the proposition that finding truly global representations of the efficient sets of multiple objective mathematical programs is a worthy goal. We summarize the essential elements of a general global shooting procedure that seeks such representations. This procedure illustrates the potential benefits to be gained from procedures for globally representing efficient sets in multiple objective mathematical programming. © 1997 John Wiley & Sons, Inc.

Suggested Citation

  • Harold P. Benson & Serpil Sayin, 1997. "Towards finding global representations of the efficient set in multiple objective mathematical programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 47-67, February.
  • Handle: RePEc:wly:navres:v:44:y:1997:i:1:p:47-67
    DOI: 10.1002/(SICI)1520-6750(199702)44:13.0.CO;2-M
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199702)44:13.0.CO;2-M
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199702)44:13.0.CO;2-M?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dessouky, M. I. & Ghiassi, M. & Davis, W. J., 1986. "Estimates of the minimum nondominated criterion values in multiple-criteria decision-making," Engineering Costs and Production Economics, Elsevier, vol. 10(2), pages 95-104, June.
    2. Leschine, Thomas M. & Wallenius, Hannele & Verdini, William A., 1992. "Interactive multiobjective analysis and assimilative capacity-based ocean disposal decisions," European Journal of Operational Research, Elsevier, vol. 56(2), pages 278-289, January.
    3. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1992. "On the Minimization of Completion Time Variance with a Bicriteria Extension," Operations Research, INFORMS, vol. 40(6), pages 1148-1155, December.
    4. Dauer, Jerald P. & Liu, Yi-Hsin, 1990. "Solving multiple objective linear programs in objective space," European Journal of Operational Research, Elsevier, vol. 46(3), pages 350-357, June.
    5. Steuer, Ralph E & Oliver, Richard L, 1976. "An application of multiple objective linear programming to media selection," Omega, Elsevier, vol. 4(4), pages 455-462.
    6. Gerald W. Evans, 1984. "An Overview of Techniques for Solving Multiobjective Mathematical Programs," Management Science, INFORMS, vol. 30(11), pages 1268-1282, November.
    7. Odile Marcotte & Richard M. Soland, 1986. "An Interactive Branch-and-Bound Algorithm for Multiple Criteria Optimization," Management Science, INFORMS, vol. 32(1), pages 61-75, January.
    8. Harold P. Benson & Thomas L. Morin, 1987. "A Bicriteria Mathematical Programming Model for Nutrition Planning in Developing Nations," Management Science, INFORMS, vol. 33(12), pages 1593-1601, December.
    9. Ralph E. Steuer, 1976. "Multiple Objective Linear Programming with Interval Criterion Weights," Management Science, INFORMS, vol. 23(3), pages 305-316, November.
    10. Dauer, J. P. & Saleh, O. A., 1990. "Constructing the set of efficient objective values in multiple objective linear programs," European Journal of Operational Research, Elsevier, vol. 46(3), pages 358-365, June.
    11. James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Jyrki Wallenius & Stanley Zionts, 1992. "Multiple Criteria Decision Making, Multiattribute Utility Theory: The Next Ten Years," Management Science, INFORMS, vol. 38(5), pages 645-654, May.
    12. Gravel, Marc & Martel, Jean Marc & Nadeau, Raymond & Price, Wilson & Tremblay, Richard, 1992. "A multicriterion view of optimal resource allocation in job-shop production," European Journal of Operational Research, Elsevier, vol. 61(1-2), pages 230-244, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacinto Martín & Concha Bielza & David Ríos Insua, 2005. "Approximating nondominated sets in continuous multiobjective optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 469-480, August.
    2. Rafael Lazimy, 2013. "Interactive Polyhedral Outer Approximation (IPOA) strategy for general multiobjective optimization problems," Annals of Operations Research, Springer, vol. 210(1), pages 73-99, November.
    3. Serpil Sayin, 2003. "A Procedure to Find Discrete Representations of the Efficient Set with Specified Coverage Errors," Operations Research, INFORMS, vol. 51(3), pages 427-436, June.
    4. G. Tohidi & H. Hassasi, 2018. "Adjacency‐based local top‐down search method for finding maximal efficient faces in multiple objective linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 203-217, April.
    5. Vahid Morovati & Hadi Basirzadeh & Latif Pourkarimi, 2018. "Quasi-Newton methods for multiobjective optimization problems," 4OR, Springer, vol. 16(3), pages 261-294, September.
    6. Jörg Fliege, 2006. "An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 825-845, November.
    7. E. Filatovas & O. Kurasova & J. L. Redondo & J. Fernández, 2020. "A reference point-based evolutionary algorithm for approximating regions of interest in multiobjective problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 402-423, July.
    8. Kuan-Min Lin & Matthias Ehrgott & Andrea Raith, 2017. "Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes," 4OR, Springer, vol. 15(4), pages 331-357, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. P. Benson, 1998. "Hybrid Approach for Solving Multiple-Objective Linear Programs in Outcome Space," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 17-35, July.
    2. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
    3. R. Ramesh & Mark H. Karwan & Stanley Zionts, 1989. "Interactive multicriteria linear programming: An extension of the method of Zionts and Wallenius," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(3), pages 321-335, June.
    4. Benson, Harold P. & Sun, Erjiang, 2002. "A weight set decomposition algorithm for finding all efficient extreme points in the outcome set of a multiple objective linear program," European Journal of Operational Research, Elsevier, vol. 139(1), pages 26-41, May.
    5. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    6. Jacinto Martín & Concha Bielza & David Ríos Insua, 2005. "Approximating nondominated sets in continuous multiobjective optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 469-480, August.
    7. H. P. Benson & E. Sun, 2000. "Outcome Space Partition of the Weight Set in Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 17-36, April.
    8. Yasemin Aksoy, 1990. "An interactive branch‐and‐bound algorithm for bicriterion nonconvex/mixed integer programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(3), pages 403-417, June.
    9. Aloysius, John A. & Davis, Fred D. & Wilson, Darryl D. & Ross Taylor, A. & Kottemann, Jeffrey E., 2006. "User acceptance of multi-criteria decision support systems: The impact of preference elicitation techniques," European Journal of Operational Research, Elsevier, vol. 169(1), pages 273-285, February.
    10. Serpil Sayin, 2003. "A Procedure to Find Discrete Representations of the Efficient Set with Specified Coverage Errors," Operations Research, INFORMS, vol. 51(3), pages 427-436, June.
    11. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    12. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    13. Moez Limayem & Gerardine DeSanctis, 2000. "Providing Decisional Guidance for Multicriteria Decision Making in Groups," Information Systems Research, INFORMS, vol. 11(4), pages 386-401, December.
    14. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    15. Chen, Jian & Tang, Liping & Yang, Xinmin, 2023. "A Barzilai-Borwein descent method for multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 311(1), pages 196-209.
    16. Zhang, Cai Wen & Ong, Hoon Liong, 2004. "Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic," European Journal of Operational Research, Elsevier, vol. 159(3), pages 545-557, December.
    17. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    18. J. Fülöp & L. D. Muu, 2000. "Branch-and-Bound Variant of an Outcome-Based Algorithm for Optimizing over the Efficient Set of a Bicriteria Linear Programming Problem," Journal of Optimization Theory and Applications, Springer, vol. 105(1), pages 37-54, April.
    19. G. Tohidi & H. Hassasi, 2018. "Adjacency‐based local top‐down search method for finding maximal efficient faces in multiple objective linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(3), pages 203-217, April.
    20. Dauer, Jerald P. & Gallagher, Richard J., 1996. "A combined constraint-space, objective-space approach for determining high-dimensional maximal efficient faces of multiple objective linear programs," European Journal of Operational Research, Elsevier, vol. 88(2), pages 368-381, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:44:y:1997:i:1:p:47-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.