IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Equilibrium analysis in financial markets with countably many securities

  • Aliprantis, C. D.
  • Florenzano, M.
  • Martins-da-Rocha, V. F.
  • Tourky, R.

An F-cone is a pointed and generating convex cone of a real vector space that is the union of a countable family of finite dimensional polyedral convex cones such that each of which is an extremel subset of the subsequent one. In this paper, we study securities markets with countably many securities and arbitrary finite portfolio holdings. Moreover, we assume that each investor is constrained to have a non-negative end-of-period wealth. If, under the portfolio dominance order, the positive cone of the portfolio space is an F-cone, then Edgeworth allocations and non-trivial quasi-equilibria exist. This result extend the case where, as in Aliprantis et al.[JME 30 (1998a) 347-366], the positive cone is a Yudin cone.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 40 (2004)
Issue (Month): 6 (September)
Pages: 683-699

in new window

Handle: RePEc:eee:mateco:v:40:y:2004:i:6:p:683-699
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Aliprantis, Charalambos D. & Brown, Donald J. & Burkinshaw, Owen, 1987. "Edgeworth equilibria in production economies," Journal of Economic Theory, Elsevier, vol. 43(2), pages 252-291, December.
  2. Donald J. Brown & Charalambos Aliprantis & Owen Burkinshaw, 1985. "Edgeworth Equilibria," Cowles Foundation Discussion Papers 756R, Cowles Foundation for Research in Economics, Yale University.
    • Aliprantis, Charalambos D & Brown, Donald J & Burkinshaw, Owen, 1987. "Edgeworth Equilibria," Econometrica, Econometric Society, vol. 55(5), pages 1109-37, September.
  3. Aliprantis, C. D. & D. J. Brown & I. A. Polyrakis & J. Werner, 1996. "Portfolio Dominance and Optimality in Infinite Security Markets," Discussion Paper Serie B 383, University of Bonn, Germany.
  4. Brown,Donald & Werner,Jan, 1991. "Arbitrage and existence of equilibrium in infinite asset markets," Discussion Paper Serie A 344, University of Bonn, Germany.
  5. Tourky, Rabee, 1998. "A New Approach to the Limit Theorem on the Core of an Economy in Vector Lattices," Journal of Economic Theory, Elsevier, vol. 78(2), pages 321-328, February.
  6. Florenzano Monique, 1988. "Edgeworth equilibria, fuzzy core and equilibria of a production economy without ordered preferences," CEPREMAP Working Papers (Couverture Orange) 8822, CEPREMAP.
  7. Aliprantis, Charalambos D. & Monteiro, Paulo K. & Tourky, Rabee, 2004. "Non-marketed options, non-existence of equilibria, and non-linear prices," Journal of Economic Theory, Elsevier, vol. 114(2), pages 345-357, February.
  8. Monique Florenzano, 2008. "General equilibrium," Documents de travail du Centre d'Economie de la Sorbonne b08005, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  9. Aliprantis, Charalambos D. & Tourky, Rabee & Yannelis, Nicholas C., 2001. "A Theory of Value with Non-linear Prices: Equilibrium Analysis beyond Vector Lattices," Journal of Economic Theory, Elsevier, vol. 100(1), pages 22-72, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:40:y:2004:i:6:p:683-699. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.