IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i2d10.1007_s10957-025-02725-1.html
   My bibliography  Save this article

Optimality Conditions and Semidefinite Linear Programming Duals for Two-Stage Adjustable Robust Quadratic Optimization

Author

Listed:
  • Huan Zhang

    (Chongqing Technology and Business University
    Chongqing University)

  • Xiangkai Sun

    (Chongqing Technology and Business University)

  • Kok Lay Teo

    (School of Mathematical Sciences, Sunway University)

Abstract

This paper is devoted to the study of a class of two-stage adjustable robust quadratic optimization problems with affine decision rules, where both the objective and constraint functions involve spectrahedral uncertain data. By using a new robust constraint qualification condition, necessary and sufficient conditions expressed in terms of linear matrix inequalities are established for the optimal solutions of the adjustable robust quadratic optimization problem. Subsequently, based on the obtained optimality conditions, a semidefinite linear programming (SDP) dual problem of this adjustable robust quadratic optimization problem is proposed. Then, weak and strong duality properties between them are established. The obtained results provide us with a way to find an optimal value of a two-stage adjustable robust quadratic optimization problem by solving its SDP linear dual problem. Furthermore, as a special case, the second-order cone programming (SOCP) dual for the two-stage adjustable robust separable quadratic optimization is considered.

Suggested Citation

  • Huan Zhang & Xiangkai Sun & Kok Lay Teo, 2025. "Optimality Conditions and Semidefinite Linear Programming Duals for Two-Stage Adjustable Robust Quadratic Optimization," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-23, August.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02725-1
    DOI: 10.1007/s10957-025-02725-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02725-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02725-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao-Bing Li & Suliman Al-Homidan & Qamrul Hasan Ansari & Jen-Chih Yao, 2020. "Robust Farkas-Minkowski Constraint Qualification for Convex Inequality System Under Data Uncertainty," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 785-802, June.
    2. Xiangkai Sun & Jiayi Huang & Kok Lay Teo, 2024. "On semidefinite programming relaxations for a class of robust SOS-convex polynomial optimization problems," Journal of Global Optimization, Springer, vol. 88(3), pages 755-776, March.
    3. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    4. Jiawei Chen & Elisabeth Köbis & Jen-Chih Yao, 2019. "Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 411-436, May.
    5. Ryoichi Nishimura & Shunsuke Hayashi & Masao Fukushima, 2013. "SDP reformulation for robust optimization problems based on nonconvex QP duality," Computational Optimization and Applications, Springer, vol. 55(1), pages 21-47, May.
    6. A. Takeda & S. Taguchi & R. H. Tütüncü, 2008. "Adjustable Robust Optimization Models for a Nonlinear Two-Period System," Journal of Optimization Theory and Applications, Springer, vol. 136(2), pages 275-295, February.
    7. Gorissen, B.L. & den Hertog, D., 2012. "Approximating the Pareto Set of Multiobjective Linear Programs via Robust Optimization," Other publications TiSEM 666c5307-4a4e-4be4-a0d0-b, Tilburg University, School of Economics and Management.
    8. La Huang & Danyang Liu & Yaping Fang, 2023. "Convergence of an SDP hierarchy and optimality of robust convex polynomial optimization problems," Annals of Operations Research, Springer, vol. 320(1), pages 33-59, January.
    9. Hong-Zhi Wei & Chun-Rong Chen & Sheng-Jie Li, 2018. "Characterizations for Optimality Conditions of General Robust Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 177(3), pages 835-856, June.
    10. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    11. Gorissen, B.L. & den Hertog, D., 2012. "Approximating the Pareto Set of Multiobjective Linear Programs via Robust Optimization," Discussion Paper 2012-031, Tilburg University, Center for Economic Research.
    12. Jiawei Chen & Jun Li & Xiaobing Li & Yibing Lv & Jen-Chih Yao, 2020. "Radius of Robust Feasibility of System of Convex Inequalities with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 384-399, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangkai Sun & Kok Lay Teo & Xian-Jun Long, 2021. "Some Characterizations of Approximate Solutions for Robust Semi-infinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 281-310, October.
    2. Huan Zhang & Xiangkai Sun & Kok Lay Teo, 2024. "Exact SDP Reformulations for Adjustable Robust Quadratic Optimization with Affine Decision Rules," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2206-2232, December.
    3. Xiangkai Sun & Wen Tan & Kok Lay Teo, 2023. "Characterizing a Class of Robust Vector Polynomial Optimization via Sum of Squares Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 737-764, May.
    4. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    5. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.
    6. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
    7. Matteo Rocca, 2025. "Sensitivity to uncertainty and scalarization in robust multiobjective optimization: an overview with application to mean-variance portfolio optimization," Annals of Operations Research, Springer, vol. 346(2), pages 1671-1686, March.
    8. Dan A. Iancu & Nikolaos Trichakis, 2014. "Pareto Efficiency in Robust Optimization," Management Science, INFORMS, vol. 60(1), pages 130-147, January.
    9. Jiawei Chen & Suliman Al-Homidan & Qamrul Hasan Ansari & Jun Li & Yibing Lv, 2021. "Robust Necessary Optimality Conditions for Nondifferentiable Complex Fractional Programming with Uncertain Data," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 221-243, April.
    10. Jie Wang & Shengjie Li & Min Feng, 2022. "Unified Robust Necessary Optimality Conditions for Nonconvex Nonsmooth Uncertain Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 226-248, October.
    11. Crespi, Giovanni P. & Kuroiwa, Daishi & Rocca, Matteo, 2018. "Robust optimization: Sensitivity to uncertainty in scalar and vector cases, with applications," Operations Research Perspectives, Elsevier, vol. 5(C), pages 113-119.
    12. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    13. S. Khoshkhabar-amiranloo, 2021. "Scalarization of Multiobjective Robust Optimization Problems," SN Operations Research Forum, Springer, vol. 2(3), pages 1-16, September.
    14. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    15. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    16. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    17. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    18. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
    19. Qiu, Ruozhen & Sun, Minghe & Lim, Yun Fong, 2017. "Optimizing (s, S) policies for multi-period inventory models with demand distribution uncertainty: Robust dynamic programing approaches," European Journal of Operational Research, Elsevier, vol. 261(3), pages 880-892.
    20. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02725-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.