IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v346y2025i2d10.1007_s10479-022-05104-5.html
   My bibliography  Save this article

Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming

Author

Listed:
  • T. D. Chuong

    (Saigon University
    RMIT University)

  • V. Jeyakumar

    (University of New South Wales)

Abstract

In this paper we study two-stage affinely adjustable robust multi-objective optimization problems. We show how (weak) Pareto optimal solutions of these robust multi-objective problems can be found by solving conic linear programming problems. We do this by first deriving numerically verifiable conditions that characterize (weak) Pareto optimal solutions of affinely adjustable robust multi-objective programs under a spectrahedron uncertainty set. The uncertainty set covers most of the commonly used uncertainty sets of robust optimization. We then reformulate the weighted-sum optimization problems of the multi-objective problems, derived with the aid of the optimality conditions, as equivalent conic linear programming problems, such as semidefinite programs or second-order cone programs, to find the (weak) Pareto optimal solutions. We illustrate by an example how our results can be used to find a second-stage (weak) Pareto optimal solution by solving a semidefinite program using a commonly available software.

Suggested Citation

  • T. D. Chuong & V. Jeyakumar, 2025. "Adjustable robust multiobjective linear optimization: Pareto optimal solutions via conic programming," Annals of Operations Research, Springer, vol. 346(2), pages 895-916, March.
  • Handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-022-05104-5
    DOI: 10.1007/s10479-022-05104-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-05104-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-05104-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davide La Torre & Franklin Mendivil, 2018. "Stochastic linear optimization under partial uncertainty and incomplete information using the notion of probability multimeasure," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(10), pages 1549-1556, October.
    2. Frans J. C. T. Ruiter & Aharon Ben-Tal & Ruud C. M. Brekelmans & Dick Hertog, 2017. "Robust optimization of uncertain multistage inventory systems with inexact data in decision rules," Computational Management Science, Springer, vol. 14(1), pages 45-66, January.
    3. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    4. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2022. "The radius of robust feasibility of uncertain mathematical programs: A Survey and recent developments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 749-763.
    5. Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
    6. Ehrgott, Matthias & Ide, Jonas & Schöbel, Anita, 2014. "Minmax robustness for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 17-31.
    7. Zheng, J.H. & Wu, Q.H. & Jing, Z.X., 2017. "Coordinated scheduling strategy to optimize conflicting benefits for daily operation of integrated electricity and gas networks," Applied Energy, Elsevier, vol. 192(C), pages 370-381.
    8. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    9. Rong-Hwa Huang & Chang-Lin Yang & Chun-Ting Hsu, 2015. "Multi-objective two-stage multiprocessor flow shop scheduling – a subgroup particle swarm optimisation approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(16), pages 3010-3018, December.
    10. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    11. Dimitris Bertsimas & Vineet Goyal, 2013. "On the approximability of adjustable robust convex optimization under uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 323-343, June.
    12. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, March.
    13. Thai Doan Chuong & Vaithilingam Jeyakumar, 2020. "Generalized Farkas Lemma with Adjustable Variables and Two-Stage Robust Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 488-519, November.
    14. Georgiev, Pando Gr. & Luc, Dinh The & Pardalos, Panos M., 2013. "Robust aspects of solutions in deterministic multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 229(1), pages 29-36.
    15. Lin, Wei & Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Xu, Xiandong & Yu, Xiaodan & Zhao, Bo, 2018. "A two-stage multi-objective scheduling method for integrated community energy system," Applied Energy, Elsevier, vol. 216(C), pages 428-441.
    16. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    17. D. La Torre & F. Mendivil, 2018. "Portfolio optimization under partial uncertainty and incomplete information: a probability multimeasure-based approach," Annals of Operations Research, Springer, vol. 267(1), pages 267-279, August.
    18. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2015. "Robust solutions to multi-objective linear programs with uncertain data," European Journal of Operational Research, Elsevier, vol. 242(3), pages 730-743.
    19. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    20. Xin Chen & Yuhan Zhang, 2009. "Uncertain Linear Programs: Extended Affinely Adjustable Robust Counterparts," Operations Research, INFORMS, vol. 57(6), pages 1469-1482, December.
    21. Liguo Jiao & Jae Hyoung Lee, 2021. "Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data," Annals of Operations Research, Springer, vol. 296(1), pages 803-820, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thai Doan Chuong & Xinghuo Yu & Chen Liu & Andrew Eberhard & Chaojie Li, 2024. "Solving Two-stage Quadratic Multiobjective Problems via Optimality and Relaxations," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 676-713, October.
    2. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    3. Schöbel, Anita & Zhou-Kangas, Yue, 2021. "The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems," European Journal of Operational Research, Elsevier, vol. 291(2), pages 782-793.
    4. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    5. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    6. Huan Zhang & Xiangkai Sun & Kok Lay Teo, 2024. "Exact SDP Reformulations for Adjustable Robust Quadratic Optimization with Affine Decision Rules," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2206-2232, December.
    7. Morteza Rahimi & Majid Soleimani-damaneh, 2018. "Robustness in Deterministic Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 137-162, October.
    8. Cao Thanh Tinh & Thai Doan Chuong, 2024. "Robust second order cone conditions and duality for multiobjective problems under uncertainty data," Journal of Global Optimization, Springer, vol. 88(4), pages 901-926, April.
    9. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    10. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    11. Klamroth, Kathrin & Köbis, Elisabeth & Schöbel, Anita & Tammer, Christiane, 2017. "A unified approach to uncertain optimization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 403-420.
    12. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    13. Ning Zhang & Chang Fang, 2020. "Saddle point approximation approaches for two-stage robust optimization problems," Journal of Global Optimization, Springer, vol. 78(4), pages 651-670, December.
    14. Morteza Rahimi & Majid Soleimani-damaneh, 2020. "Characterization of Norm-Based Robust Solutions in Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(2), pages 554-573, May.
    15. Morteza Rahimi & Majid Soleimani-damaneh, 2023. "Aubin property for solution set in multi-objective programming," Journal of Global Optimization, Springer, vol. 85(2), pages 441-460, February.
    16. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    17. Groetzner, Patrick & Werner, Ralf, 2022. "Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach," European Journal of Operational Research, Elsevier, vol. 296(1), pages 101-115.
    18. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    19. T. D. Chuong & V. Jeyakumar & G. Li & D. Woolnough, 2021. "Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity," Journal of Global Optimization, Springer, vol. 81(4), pages 1095-1117, December.
    20. Caprari, Elisa & Cerboni Baiardi, Lorenzo & Molho, Elena, 2019. "Primal worst and dual best in robust vector optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 830-838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:346:y:2025:i:2:d:10.1007_s10479-022-05104-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.