IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i4d10.1007_s10898-023-01335-3.html
   My bibliography  Save this article

Robust second order cone conditions and duality for multiobjective problems under uncertainty data

Author

Listed:
  • Cao Thanh Tinh

    (Vietnam National University
    University of Information Technology)

  • Thai Doan Chuong

    (Brunel University London
    Saigon University)

Abstract

This paper studies a class of multiobjective convex polynomial problems, where both the constraint and objective functions involve uncertain parameters that reside in ellipsoidal uncertainty sets. Employing the robust deterministic approach, we provide necessary conditions and sufficient conditions, which are exhibited in relation to second order cone conditions, for robust (weak) Pareto solutions of the uncertain multiobjective optimization problem. A dual multiobjective problem is proposed to examine robust converse, robust weak and robust strong duality relations between the primal and dual problems. Moreover, we establish robust solution relationships between the uncertain multiobjective optimization program and a (scalar) second order cone programming relaxation problem of a corresponding weighted-sum optimization problem. This in particular shows that we can find a robust (weak) Pareto solution of the uncertain multiobjective optimization problem by solving a second order cone programming relaxation.

Suggested Citation

  • Cao Thanh Tinh & Thai Doan Chuong, 2024. "Robust second order cone conditions and duality for multiobjective problems under uncertainty data," Journal of Global Optimization, Springer, vol. 88(4), pages 901-926, April.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01335-3
    DOI: 10.1007/s10898-023-01335-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01335-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01335-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Davide La Torre & Franklin Mendivil, 2018. "Stochastic linear optimization under partial uncertainty and incomplete information using the notion of probability multimeasure," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(10), pages 1549-1556, October.
    2. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    3. Matthias Ehrgott, 2005. "Multicriteria Optimization," Springer Books, Springer, edition 0, number 978-3-540-27659-3, December.
    4. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    5. Panos M. Pardalos & Antanas Žilinskas & Julius Žilinskas, 2017. "Non-Convex Multi-Objective Optimization," Springer Optimization and Its Applications, Springer, number 978-3-319-61007-8, March.
    6. Jae Hyoung Lee & Gue Myung Lee, 2018. "On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems," Annals of Operations Research, Springer, vol. 269(1), pages 419-438, October.
    7. D. La Torre & F. Mendivil, 2018. "Portfolio optimization under partial uncertainty and incomplete information: a probability multimeasure-based approach," Annals of Operations Research, Springer, vol. 267(1), pages 267-279, August.
    8. Liguo Jiao & Jae Hyoung Lee, 2021. "Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data," Annals of Operations Research, Springer, vol. 296(1), pages 803-820, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangkai Sun & Jiayi Huang & Kok Lay Teo, 2024. "On semidefinite programming relaxations for a class of robust SOS-convex polynomial optimization problems," Journal of Global Optimization, Springer, vol. 88(3), pages 755-776, March.
    2. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    3. T. D. Chuong & V. H. Mak-Hau & J. Yearwood & R. Dazeley & M.-T. Nguyen & T. Cao, 2022. "Robust Pareto solutions for convex quadratic multiobjective optimization problems under data uncertainty," Annals of Operations Research, Springer, vol. 319(2), pages 1533-1564, December.
    4. Tianyi Han & Liguo Jiao & Jae Hyoung Lee & Junping Yin, 2024. "A utopia point method-based robust vector polynomial optimization scheme," Journal of Global Optimization, Springer, vol. 88(2), pages 461-483, February.
    5. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    6. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    7. Nguyen Minh Tung & Mai Duy, 2023. "Constraint qualifications and optimality conditions for robust nonsmooth semi-infinite multiobjective optimization problems," 4OR, Springer, vol. 21(1), pages 151-176, March.
    8. D. Torre & F. Mendivil & M. Rocca, 2024. "Modeling portfolio efficiency using stochastic optimization with incomplete information and partial uncertainty," Annals of Operations Research, Springer, vol. 334(1), pages 241-263, March.
    9. Murcia, Nathanaëlle N.S. & Ferreira, Fernando A.F. & Ferreira, João J.M., 2022. "Enhancing strategic management using a “quantified VRIO”: Adding value with the MCDA approach," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    10. Gabriele Eichfelder & Leo Warnow, 2022. "An approximation algorithm for multi-objective optimization problems using a box-coverage," Journal of Global Optimization, Springer, vol. 83(2), pages 329-357, June.
    11. D. La Torre & F. Mendivil, 2022. "Stochastic efficiency and inefficiency in portfolio optimization with incomplete information: a set-valued probability approach," Annals of Operations Research, Springer, vol. 311(2), pages 1085-1098, April.
    12. Xiangkai Sun & Wen Tan & Kok Lay Teo, 2023. "Characterizing a Class of Robust Vector Polynomial Optimization via Sum of Squares Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 737-764, May.
    13. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    14. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    15. Stelios Rozakis & Athanasios Kampas, 2022. "An interactive multi-criteria approach to admit new members in international environmental agreements," Operational Research, Springer, vol. 22(4), pages 3461-3487, September.
    16. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    17. Chambers, Robert G., 2024. "Numeraire choice, shadow profit, and inefficiency measurement," European Journal of Operational Research, Elsevier, vol. 319(2), pages 658-668.
    18. Fatemeh Ghandi & Mostafa Davtalab-Olyaie & Masoud Asgharian, 2024. "Peer-evaluation in centrally managed systems," Annals of Operations Research, Springer, vol. 333(1), pages 439-459, February.
    19. Fernando García-Castaño & Miguel Ángel Melguizo-Padial & G. Parzanese, 2023. "Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 367-382, June.
    20. Min Feng & Shengjie Li & Jie Wang, 2022. "On Tucker-Type Alternative Theorems and Necessary Optimality Conditions for Nonsmooth Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 480-503, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01335-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.