IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i2d10.1007_s10898-023-01321-9.html
   My bibliography  Save this article

A utopia point method-based robust vector polynomial optimization scheme

Author

Listed:
  • Tianyi Han

    (Shanghai Jiao Tong University)

  • Liguo Jiao

    (Northeast Normal University
    Institute of Applied Physics and Computational Mathematics)

  • Jae Hyoung Lee

    (Pukyong National University)

  • Junping Yin

    (Institute of Applied Physics and Computational Mathematics
    Shanghai Zhangjiang Institute of Mathematics)

Abstract

In this paper, we focus on a class of robust vector polynomial optimization problems (RVPOP in short) without any convex assumptions. By combining/improving the utopia point method (a nonlinear scalarization) for vector optimization and “joint+marginal" relaxation method for polynomial optimization, we solve the RVPOP successfully. Both theoratical and computational aspects are considered.

Suggested Citation

  • Tianyi Han & Liguo Jiao & Jae Hyoung Lee & Junping Yin, 2024. "A utopia point method-based robust vector polynomial optimization scheme," Journal of Global Optimization, Springer, vol. 88(2), pages 461-483, February.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:2:d:10.1007_s10898-023-01321-9
    DOI: 10.1007/s10898-023-01321-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01321-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01321-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gabriel R. Bitran, 1980. "Linear Multiple Objective Problems with Interval Coefficients," Management Science, INFORMS, vol. 26(7), pages 694-706, July.
    2. J. Lasserre, 2011. "Min-max and robust polynomial optimization," Journal of Global Optimization, Springer, vol. 51(1), pages 1-10, September.
    3. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    4. Thai Doan Chuong, 2022. "Second-order cone programming relaxations for a class of multiobjective convex polynomial problems," Annals of Operations Research, Springer, vol. 311(2), pages 1017-1033, April.
    5. Jae Hyoung Lee & Liguo Jiao, 2018. "Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 428-455, February.
    6. J. Lasserre, 2012. "An algorithm for semi-infinite polynomial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 119-129, April.
    7. Liguo Jiao & Jae Hyoung Lee, 2021. "Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data," Annals of Operations Research, Springer, vol. 296(1), pages 803-820, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    2. Xiangkai Sun & Jiayi Huang & Kok Lay Teo, 2024. "On semidefinite programming relaxations for a class of robust SOS-convex polynomial optimization problems," Journal of Global Optimization, Springer, vol. 88(3), pages 755-776, March.
    3. Feng Guo & Liguo Jiao, 2021. "On solving a class of fractional semi-infinite polynomial programming problems," Computational Optimization and Applications, Springer, vol. 80(2), pages 439-481, November.
    4. Xiangkai Sun & Wen Tan & Kok Lay Teo, 2023. "Characterizing a Class of Robust Vector Polynomial Optimization via Sum of Squares Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 737-764, May.
    5. Cao Thanh Tinh & Thai Doan Chuong, 2024. "Robust second order cone conditions and duality for multiobjective problems under uncertainty data," Journal of Global Optimization, Springer, vol. 88(4), pages 901-926, April.
    6. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    7. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    8. Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.
    9. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    10. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.
    11. Goberna, M.A. & Jeyakumar, V. & Li, G. & Vicente-Pérez, J., 2018. "Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs," European Journal of Operational Research, Elsevier, vol. 270(1), pages 40-50.
    12. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    13. Engau, Alexander & Sigler, Devon, 2020. "Pareto solutions in multicriteria optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 357-368.
    14. S. Rivaz & M. A. Yaghoobi & M. Hladík, 2016. "Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem," Fuzzy Optimization and Decision Making, Springer, vol. 15(3), pages 237-253, September.
    15. P. Kumar & A. K. Bhurjee, 2022. "Multi-objective enhanced interval optimization problem," Annals of Operations Research, Springer, vol. 311(2), pages 1035-1050, April.
    16. Botte, Marco & Schöbel, Anita, 2019. "Dominance for multi-objective robust optimization concepts," European Journal of Operational Research, Elsevier, vol. 273(2), pages 430-440.
    17. Stelios Rozakis, 2010. "Hybrid linear programming to estimate CAP impacts of flatter rates and environmental top-ups," Working Papers 2010-03, Agricultural University of Athens, Department Of Agricultural Economics.
    18. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    19. Li, Xiang & Qin, Zhongfeng, 2014. "Interval portfolio selection models within the framework of uncertainty theory," Economic Modelling, Elsevier, vol. 41(C), pages 338-344.
    20. Liguo Jiao & Jae Hyoung Lee, 2021. "Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data," Annals of Operations Research, Springer, vol. 296(1), pages 803-820, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:2:d:10.1007_s10898-023-01321-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.