IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i2d10.1007_s10957-018-1222-8.html
   My bibliography  Save this article

Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data

Author

Listed:
  • Jae Hyoung Lee

    (Pukyong National University)

  • Liguo Jiao

    (Yanbian University)

Abstract

This paper focuses on the study of finding efficient solutions in fractional multicriteria optimization problems with sum of squares convex polynomial data. We first relax the fractional multicriteria optimization problems to fractional scalar ones. Then, using the parametric approach, we transform the fractional scalar problems into non-fractional problems. Consequently, we prove that, under a suitable regularity condition, the optimal solution of each non-fractional scalar problem can be found by solving its associated single semidefinite programming problem. Finally, we show that finding efficient solutions in the fractional multicriteria optimization problems is tractable by employing the epsilon constraint method. In particular, if the denominators of each component of the objective functions are same, then we observe that efficient solutions in such a problem can be effectively found by using the hybrid method. Some numerical examples are given to illustrate our results.

Suggested Citation

  • Jae Hyoung Lee & Liguo Jiao, 2018. "Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 428-455, February.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-018-1222-8
    DOI: 10.1007/s10957-018-1222-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1222-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1222-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. H. J. Chen & S. Schaible & R. L. Sheu, 2009. "Generic Algorithm for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 93-105, April.
    2. Jibetean, D. & de Klerk, E., 2006. "Global optimization of rational functions : A semidefinite programming approach," Other publications TiSEM 25febbc3-cd0c-4eb7-9d37-d, Tilburg University, School of Economics and Management.
    3. Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
    4. Schaible, Siegfried & Ibaraki, Toshidide, 1983. "Fractional programming," European Journal of Operational Research, Elsevier, vol. 12(4), pages 325-338, April.
    5. V. Jeyakumar & J. Vicente-Pérez, 2014. "Dual Semidefinite Programs Without Duality Gaps for a Class of Convex Minimax Programs," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 735-753, September.
    6. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yarui Duan & Liguo Jiao & Pengcheng Wu & Yuying Zhou, 2022. "Existence of Pareto Solutions for Vector Polynomial Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 148-171, October.
    2. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    3. Feng Guo & Liguo Jiao, 2021. "On solving a class of fractional semi-infinite polynomial programming problems," Computational Optimization and Applications, Springer, vol. 80(2), pages 439-481, November.
    4. Liguo Jiao & Jae Hyoung Lee, 2021. "Finding efficient solutions in robust multiple objective optimization with SOS-convex polynomial data," Annals of Operations Research, Springer, vol. 296(1), pages 803-820, January.
    5. Thai Doan Chuong, 2021. "Optimality and duality in nonsmooth composite vector optimization and applications," Annals of Operations Research, Springer, vol. 296(1), pages 755-777, January.
    6. Jae Hyoung Lee & Nithirat Sisarat & Liguo Jiao, 2021. "Multi-objective convex polynomial optimization and semidefinite programming relaxations," Journal of Global Optimization, Springer, vol. 80(1), pages 117-138, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bram L. Gorissen, 2015. "Robust Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 508-528, August.
    2. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.
    3. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    4. Jalili Marand, Ata & Li, Hongyan & Thorstenson, Anders, 2019. "Joint inventory control and pricing in a service-inventory system," International Journal of Production Economics, Elsevier, vol. 209(C), pages 78-91.
    5. Feng Guo & Li Wang & Guangming Zhou, 2014. "Minimizing rational functions by exact Jacobian SDP relaxation applicable to finite singularities," Journal of Global Optimization, Springer, vol. 58(2), pages 261-284, February.
    6. Abderrahman Bouhamidi & Mohammed Bellalij & Rentsen Enkhbat & Khalid Jbilou & Marcos Raydan, 2018. "Conditional Gradient Method for Double-Convex Fractional Programming Matrix Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 163-177, January.
    7. Vaithilingam Jeyakumar & Gue Myung Lee & Jae Hyoung Lee & Yingkun Huang, 2024. "Sum-of-Squares Relaxations in Robust DC Optimization and Feature Selection," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 308-343, January.
    8. Philipp Renner & Karl Schmedders, 2017. "Dynamic Principal–Agent Models," Working Papers 203620456, Lancaster University Management School, Economics Department.
    9. Chong Hyun Park & Gemma Berenguer, 2020. "Supply Constrained Location‐Distribution in Not‐for‐Profit Settings," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2461-2483, November.
    10. Eleftherios Couzoudis & Philipp Renner, 2013. "Computing generalized Nash equilibria by polynomial programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 459-472, June.
    11. V. Jeyakumar & J. Vicente-Pérez, 2014. "Dual Semidefinite Programs Without Duality Gaps for a Class of Convex Minimax Programs," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 735-753, September.
    12. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    13. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    14. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    15. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    16. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    17. Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.
    18. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    19. Laurent, M. & Rostalski, P., 2012. "The approach of moments for polynomial equations," Other publications TiSEM f08f3cd2-b83e-4bf1-9322-a, Tilburg University, School of Economics and Management.
    20. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:2:d:10.1007_s10957-018-1222-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.