IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v207y2025i2d10.1007_s10957-025-02799-x.html
   My bibliography  Save this article

An Implementable Proximal Extragradient Method for Structured Fractional Programming

Author

Listed:
  • Jiajun Hao

    (Ningbo University)

  • Hongjin He

    (Ningbo University)

  • Liangshao Hou

    (Sun Yat-sen University
    Hong Kong Baptist University)

Abstract

A class of structured fractional programming is studied, where the numerator of the objective function consists of the sum of a nonsmooth function and a smooth function, while the denominator is a convex function. To solve this class of problems, the implementable proximal extragradient algorithm (IPEM) and its variant with linesearch (IPEM-L) are proposed. First, the fractional structure is handled using Dinkelbach’s method. Then, the extended extragradient method is applied to solve the resulting subproblems. By incorporating parameter updates, the proposed algorithms are formulated. A practical linesearch is further introduced to enhance efficiency of the IPEM. Under certain assumptions, both subsequential and whole sequence convergence are established, with the latter relying on the Kurdyka-Łojasiewicz (KŁ) property. Finally, numerical experiments on some synthetic and real datasets demonstrate the competitiveness of the proposed algorithms.

Suggested Citation

  • Jiajun Hao & Hongjin He & Liangshao Hou, 2025. "An Implementable Proximal Extragradient Method for Structured Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 207(2), pages 1-33, November.
  • Handle: RePEc:spr:joptap:v:207:y:2025:i:2:d:10.1007_s10957-025-02799-x
    DOI: 10.1007/s10957-025-02799-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02799-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02799-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. R. Jagannathan, 1966. "On Some Properties of Programming Problems in Parametric form Pertaining to Fractional Programming," Management Science, INFORMS, vol. 12(7), pages 609-615, March.
    3. Schaible, Siegfried & Ibaraki, Toshidide, 1983. "Fractional programming," European Journal of Operational Research, Elsevier, vol. 12(4), pages 325-338, April.
    4. Roberto Baldacci & Andrew Lim & Emiliano Traversi & Roberto Wolfler Calvo, 2020. "Optimal Solution of Vehicle Routing Problems with Fractional Objective Function," Transportation Science, INFORMS, vol. 54(2), pages 434-452, March.
    5. H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
    6. Kean Ming Tan & Zhaoran Wang & Han Liu & Tong Zhang, 2018. "Sparse generalized eigenvalue problem: optimal statistical rates via truncated Rayleigh flow," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 1057-1086, November.
    7. Benson, Harold P., 2006. "Fractional programming with convex quadratic forms and functions," European Journal of Operational Research, Elsevier, vol. 173(2), pages 351-369, September.
    8. Radu Ioan Boţ & Minh N. Dao & Guoyin Li, 2022. "Extrapolated Proximal Subgradient Algorithms for Nonconvex and Nonsmooth Fractional Programs," Mathematics of Operations Research, INFORMS, vol. 47(3), pages 2415-2443, August.
    9. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Welington Oliveira & Valentina Sessa & David Sossa, 2024. "Computing Critical Angles Between Two Convex Cones," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 866-898, May.
    2. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.
    3. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    4. Meijia Yang & Yong Xia & Jiulin Wang & Jiming Peng, 2018. "Efficiently solving total least squares with Tikhonov identical regularization," Computational Optimization and Applications, Springer, vol. 70(2), pages 571-592, June.
    5. Jalili Marand, Ata & Li, Hongyan & Thorstenson, Anders, 2019. "Joint inventory control and pricing in a service-inventory system," International Journal of Production Economics, Elsevier, vol. 209(C), pages 78-91.
    6. Abderrahman Bouhamidi & Mohammed Bellalij & Rentsen Enkhbat & Khalid Jbilou & Marcos Raydan, 2018. "Conditional Gradient Method for Double-Convex Fractional Programming Matrix Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 163-177, January.
    7. Bram L. Gorissen, 2015. "Robust Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 508-528, August.
    8. Tajbakhsh, Alireza & Hassini, Elkafi, 2018. "Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis," Energy Economics, Elsevier, vol. 74(C), pages 154-178.
    9. Jae Hyoung Lee & Liguo Jiao, 2018. "Solving Fractional Multicriteria Optimization Problems with Sum of Squares Convex Polynomial Data," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 428-455, February.
    10. Meena K. Bector & I. Husain & S. Chandra & C. R. Bector, 1988. "A duality model for a generalized minmax program," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(5), pages 493-501, October.
    11. Chong Hyun Park & Gemma Berenguer, 2020. "Supply Constrained Location‐Distribution in Not‐for‐Profit Settings," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2461-2483, November.
    12. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "An algorithm for quadratically constrained multi-objective quadratic fractional programming with pentagonal fuzzy numbers," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 49-71.
    13. Garrido, Rodrigo A. & Bronfman, Andrés C., 2017. "Equity and social acceptability in multiple hazardous materials routing through urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 244-260.
    14. Agarwal, Deepika & Singh, Pitam & El Sayed, M.A., 2023. "The Karush–Kuhn–Tucker (KKT) optimality conditions for fuzzy-valued fractional optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 861-877.
    15. M. Barkhagen & S. García & J. Gondzio & J. Kalcsics & J. Kroeske & S. Sabanis & A. Staal, 2023. "Optimising portfolio diversification and dimensionality," Journal of Global Optimization, Springer, vol. 85(1), pages 185-234, January.
    16. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    17. Shweta Upadhyaya & Divya Agarwal & Shree Vaishnawi, 2025. "Convexity Conditions for Optimizing a Single Server Discrete-time Queueing System under a Randomized Cutoff Policy," Methodology and Computing in Applied Probability, Springer, vol. 27(3), pages 1-26, September.
    18. Yixuan Qiu & Jing Lei & Kathryn Roeder, 2023. "Gradient-based sparse principal component analysis with extensions to online learning," Biometrika, Biometrika Trust, vol. 110(2), pages 339-360.
    19. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    20. Sauvenier, Mathieu & Van Bellegem, Sébastien, 2023. "Direction Identification and Minimax Estimation by Generalized Eigenvalue Problem in High Dimensional Sparse Regression," LIDAM Discussion Papers CORE 2023005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:207:y:2025:i:2:d:10.1007_s10957-025-02799-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.