IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/12097.html
   My bibliography  Save this paper

An exact method for a discrete multiobjective linear fractional optimization

Author

Listed:
  • Chergui, M. E-A
  • Moulai, M.

Abstract

Integer linear fractional programming problem with multiple objective MOILFP is an important field of research and has not received as much attention as did multiple objective linear fractional programming. In this work, we develop a branch and cut algorithm based on continuous fractional optimization, for generating the whole integer efficient solutions of the MOILFP problem. The basic idea of the computation phase of the algorithm is to optimize one of the fractional objective functions, then generate an integer feasible solution. Using the reduced gradients of the objective functions, an efficient cut is built and a part of the feasible domain not containing efficient solutions is truncated by adding this cut. A sample problem is solved using this algorithm, and the main practical advantages of the algorithm are indicated.

Suggested Citation

  • Chergui, M. E-A & Moulai, M., 2007. "An exact method for a discrete multiobjective linear fractional optimization," MPRA Paper 12097, University Library of Munich, Germany, revised 09 Jan 2008.
  • Handle: RePEc:pra:mprapa:12097
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/12097/1/MPRA_paper_12097.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Metev, Boyan & Gueorguieva, Dessislava, 2000. "A simple method for obtaining weakly efficient points in multiobjective linear fractional programming problems," European Journal of Operational Research, Elsevier, vol. 126(2), pages 386-390, October.
    2. Costa, Joao Paulo, 2007. "Computing non-dominated solutions in MOLFP," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1464-1475, September.
    3. Schaible, Siegfried, 1981. "Fractional programming: Applications and algorithms," European Journal of Operational Research, Elsevier, vol. 7(2), pages 111-120, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zerdani, Ouiza & Moulai, Mustapha, 2011. "Optimization over an integer efficient set of a Multiple Objective Linear Fractional Problem," MPRA Paper 35579, University Library of Munich, Germany.

    More about this item

    Keywords

    multiobjective programming; integer programming; linear fractional programming; branch and cut;

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:12097. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.