IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v90y2025i3d10.1007_s10589-025-00655-2.html
   My bibliography  Save this article

Regularized methods via cubic model subspace minimization for nonconvex optimization

Author

Listed:
  • Stefania Bellavia

    (Università degli Studi di Firenze)

  • Davide Palitta

    (Alma Mater Studiorum - Università di Bologna)

  • Margherita Porcelli

    (Università degli Studi di Firenze
    ISTI–CNR)

  • Valeria Simoncini

    (Alma Mater Studiorum - Università di Bologna
    IMATI-CNR)

Abstract

Adaptive cubic regularization methods for solving nonconvex problems need the efficient computation of the trial step, involving the minimization of a cubic model. We propose a new approach in which this model is minimized in a low dimensional subspace that, in contrast to classic approaches, is reused for a number of iterations. Whenever the trial step produced by the low-dimensional minimization process is unsatisfactory, we employ a regularized Newton step whose regularization parameter is a by-product of the model minimization over the low-dimensional subspace. We show that the worst-case complexity of classic cubic regularized methods is preserved, despite the possible regularized Newton steps. We focus on the large class of problems for which (sparse) direct linear system solvers are available and provide several experimental results showing the very large gains of our new approach when compared to standard implementations of adaptive cubic regularization methods based on direct linear solvers. Our first choice as projection space for the low-dimensional model minimization is the polynomial Krylov subspace; nonetheless, we also explore the use of rational Krylov subspaces in case where the polynomial ones lead to less competitive numerical results.

Suggested Citation

  • Stefania Bellavia & Davide Palitta & Margherita Porcelli & Valeria Simoncini, 2025. "Regularized methods via cubic model subspace minimization for nonconvex optimization," Computational Optimization and Applications, Springer, vol. 90(3), pages 801-837, April.
  • Handle: RePEc:spr:coopap:v:90:y:2025:i:3:d:10.1007_s10589-025-00655-2
    DOI: 10.1007/s10589-025-00655-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-025-00655-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-025-00655-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Gould & M. Porcelli & P. Toint, 2012. "Updating the regularization parameter in the adaptive cubic regularization algorithm," Computational Optimization and Applications, Springer, vol. 53(1), pages 1-22, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonggang Pei & Shaofang Song & Detong Zhu, 2023. "A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization," Computational Optimization and Applications, Springer, vol. 84(3), pages 1005-1033, April.
    2. E. G. Birgin & J. M. Martínez, 2019. "A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization," Computational Optimization and Applications, Springer, vol. 73(3), pages 707-753, July.
    3. J. M. Martínez & M. Raydan, 2017. "Cubic-regularization counterpart of a variable-norm trust-region method for unconstrained minimization," Journal of Global Optimization, Springer, vol. 68(2), pages 367-385, June.
    4. J. Martínez & M. Raydan, 2015. "Separable cubic modeling and a trust-region strategy for unconstrained minimization with impact in global optimization," Journal of Global Optimization, Springer, vol. 63(2), pages 319-342, October.
    5. Tommaso Bianconcini & Giampaolo Liuzzi & Benedetta Morini & Marco Sciandrone, 2015. "On the use of iterative methods in cubic regularization for unconstrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 35-57, January.
    6. Elizabeth Karas & Sandra Santos & Benar Svaiter, 2015. "Algebraic rules for quadratic regularization of Newton’s method," Computational Optimization and Applications, Springer, vol. 60(2), pages 343-376, March.
    7. Hande Benson & David Shanno, 2014. "Interior-point methods for nonconvex nonlinear programming: cubic regularization," Computational Optimization and Applications, Springer, vol. 58(2), pages 323-346, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:90:y:2025:i:3:d:10.1007_s10589-025-00655-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.