IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i1p157-169.html
   My bibliography  Save this article

Directed particle swarm optimization with Gaussian-process-based function forecasting

Author

Listed:
  • Jakubik, Johannes
  • Binding, Adrian
  • Feuerriegel, Stefan

Abstract

Particle swarm optimization (PSO) is an iterative search method that moves a set of candidate solution around a search-space towards the best known global and local solutions with randomized step lengths. PSO frequently accelerates optimization in practical applications, where gradients are not available and function evaluations expensive. Yet the traditional PSO algorithm ignores the potential knowledge that could have been gained of the objective function from the observations by individual particles. Hence, we draw upon concepts from Bayesian optimization and introduce a stochastic surrogate model of the objective function. That is, we fit a Gaussian process to past evaluations of the objective function, forecast its shape and then adapt the particle movements based on it. Our computational experiments demonstrate that baseline implementations of PSO (i. e., SPSO2011) are outperformed. Furthermore, compared to, state-of-art surrogate-assisted evolutionary algorithms, we achieve substantial performance improvements on several popular benchmark functions. Overall, we find that our algorithm attains desirable properties for exploratory and exploitative behavior.

Suggested Citation

  • Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:157-169
    DOI: 10.1016/j.ejor.2021.02.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721001661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.02.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Shu-Kai S. & Zahara, Erwie, 2007. "A hybrid simplex search and particle swarm optimization for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 181(2), pages 527-548, September.
    2. Neungmatcha, Woraya, 2016. "Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operationsAuthor-Name: Sethanan, Kanchana," European Journal of Operational Research, Elsevier, vol. 252(3), pages 969-984.
    3. Liu, Ruochen & Li, Jianxia & fan, Jing & Mu, Caihong & Jiao, Licheng, 2017. "A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1028-1051.
    4. Etgar, Ran & Gelbard, Roy & Cohen, Yuval, 2017. "Optimizing version release dates of research and development long-term processes," European Journal of Operational Research, Elsevier, vol. 259(2), pages 642-653.
    5. Yu, Shiwei & Zheng, Shuhong & Gao, Shiwei & Yang, Juan, 2017. "A multi-objective decision model for investment in energy savings and emission reductions in coal mining," European Journal of Operational Research, Elsevier, vol. 260(1), pages 335-347.
    6. Hong, Zhaofu & Dai, Wei & Luh, Hsing & Yang, Chenchen, 2018. "Optimal configuration of a green product supply chain with guaranteed service time and emission constraints," European Journal of Operational Research, Elsevier, vol. 266(2), pages 663-677.
    7. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    8. Tasgetiren, M. Fatih & Liang, Yun-Chia & Sevkli, Mehmet & Gencyilmaz, Gunes, 2007. "A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1930-1947, March.
    9. Yin, Peng-Yeng & Glover, Fred & Laguna, Manuel & Zhu, Jia-Xian, 2010. "Cyber Swarm Algorithms - Improving particle swarm optimization using adaptive memory strategies," European Journal of Operational Research, Elsevier, vol. 201(2), pages 377-389, March.
    10. Zouache, Djaafar & Moussaoui, Abdelouahab & Ben Abdelaziz, Fouad, 2018. "A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 74-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Dongran & Shen, Xutao & Gao, Yang & Wang, Lei & Du, Xin & Xu, Zhiliang & Zhang, Zhihong & Huang, Chaoneng & Yang, Jian & Dong, Mi & Joo, Young Hoo, 2023. "Application of surrogate-assisted global optimization algorithm with dimension-reduction in power optimization of floating offshore wind farm," Applied Energy, Elsevier, vol. 351(C).
    2. Lavanya, R. & Murukesh, C. & Shanker, N.R., 2023. "Microclimatic HVAC system for nano painted rooms using PSO based occupancy regression controller," Energy, Elsevier, vol. 278(PA).
    3. Huang, Yuming & Ge, Bingfeng & Hipel, Keith W. & Fang, Liping & Zhao, Bin & Yang, Kewei, 2023. "Solving the inverse graph model for conflict resolution using a hybrid metaheuristic algorithm," European Journal of Operational Research, Elsevier, vol. 305(2), pages 806-819.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Bjerg Thomsen & Francesco Ferri & Jens Peter Kofoed & Kevin Black, 2018. "Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters," Energies, MDPI, vol. 11(1), pages 1-23, January.
    2. Dong, Ciwei & Liu, Qingyu & Shen, Bin, 2019. "To be or not to be green? Strategic investment for green product development in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 193-227.
    3. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    4. Albert Corominas & Alberto García-Villoria & Rafael Pastor, 2013. "Metaheuristic algorithms hybridised with variable neighbourhood search for solving the response time variability problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 296-312, July.
    5. Gabriela Simonet & Julie Subervie & Driss Ezzine-De-Blas & Marina Cromberg & Amy Duchelle, 2015. "Paying smallholders not to cut down the amazon forest: impact evaluation of a REDD+ pilot project," Working Papers 1514, Chaire Economie du climat.
    6. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    7. Jacomine Grobler & Andries Engelbrecht & Schalk Kok & Sarma Yadavalli, 2010. "Metaheuristics for the multi-objective FJSP with sequence-dependent set-up times, auxiliary resources and machine down time," Annals of Operations Research, Springer, vol. 180(1), pages 165-196, November.
    8. Pan, Quan-Ke & Ruiz, Rubén, 2012. "Local search methods for the flowshop scheduling problem with flowtime minimization," European Journal of Operational Research, Elsevier, vol. 222(1), pages 31-43.
    9. Quang Chieu Ta & Jean-Charles Billaut & Jean-Louis Bouquard, 2018. "Matheuristic algorithms for minimizing total tardiness in the m-machine flow-shop scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 617-628, March.
    10. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    11. Zhaofu Hong & Hao Wang & Yeming Gong, 2019. "Green product design considering functional-product reference," Post-Print hal-02312293, HAL.
    12. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    13. Junkai He & Feng Chu & Feifeng Zheng & Ming Liu, 2021. "A green-oriented bi-objective disassembly line balancing problem with stochastic task processing times," Annals of Operations Research, Springer, vol. 296(1), pages 71-93, January.
    14. Christophe Gouel & Nicolas Legrand, 2017. "Estimating the Competitive Storage Model with Trending Commodity Prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 744-763, June.
    15. Zhao, Jake, 2020. "Accounting for the corporate cash increase," European Economic Review, Elsevier, vol. 123(C).
    16. Hannes Schwarz & Valentin Bertsch & Wolf Fichtner, 2018. "Two-stage stochastic, large-scale optimization of a decentralized energy system: a case study focusing on solar PV, heat pumps and storage in a residential quarter," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 265-310, January.
    17. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    18. Pan, Quan-Ke & Gao, Liang & Li, Xin-Yu & Gao, Kai-Zhou, 2017. "Effective metaheuristics for scheduling a hybrid flowshop with sequence-dependent setup times," Applied Mathematics and Computation, Elsevier, vol. 303(C), pages 89-112.
    19. Ziqian Wang & Xin Huang & Yan Zhang & Danju Lv & Wei Li & Zhicheng Zhu & Jian’e Dong, 2024. "Modeling and Solving the Knapsack Problem with a Multi-Objective Equilibrium Optimizer Algorithm Based on Weighted Congestion Distance," Mathematics, MDPI, vol. 12(22), pages 1-19, November.
    20. Pinar, Mehmet & Stengos, Thanasis & Topaloglou, Nikolas, 2020. "On the construction of a feasible range of multidimensional poverty under benchmark weight uncertainty," European Journal of Operational Research, Elsevier, vol. 281(2), pages 415-427.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:1:p:157-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.