IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v147y2018i3d10.1007_s10584-018-2160-z.html
   My bibliography  Save this article

Crop modelling: towards locally relevant and climate-informed adaptation

Author

Listed:
  • Louise Beveridge

    (University of Leeds
    University of Leeds)

  • Stephen Whitfield

    (University of Leeds)

  • Andy Challinor

    (University of Leeds)

Abstract

A gap between the potential and practical realisation of adaptation exists: adaptation strategies need to be both climate-informed and locally relevant to be viable. Place-based approaches study local and contemporary dynamics of the agricultural system, whereas climate impact modelling simulates climate-crop interactions across temporal and spatial scales. Crop-climate modelling and place-based research on adaptation were strategically reviewed and analysed to identify areas of commonality, differences, and potential learning opportunities to enhance the relevance of both disciplines through interdisciplinary approaches. Crop-modelling studies have projected a 7–15% mean yield change with adaptation compared to a non-adaptation baseline (Nature Climate Change 4:1–5, 2014). Of the 17 types of adaptation strategy identified in this study as place-based adaptations occurring within Central America, only five were represented in crop-climate modelling literature, and these were as follows: fertiliser, irrigation, change in planting date, change in cultivar and area cultivated. The breath and agency of real-life adaptation compared to its representation in modelling studies is a source of error in climate impact simulations. Conversely, adaptation research that omits assessment of future climate variability and impact does not enable to provide sustainable adaptation strategies to local communities so risk maladaptation. Integrated and participatory methods can identify and reduce these sources of uncertainty, for example, stakeholder’s engagement can identify locally relevant adaptation pathways. We propose a research agenda that uses methodological approaches from both the modelling and place-based approaches to work towards climate-informed locally relevant adaptation.

Suggested Citation

  • Louise Beveridge & Stephen Whitfield & Andy Challinor, 2018. "Crop modelling: towards locally relevant and climate-informed adaptation," Climatic Change, Springer, vol. 147(3), pages 475-489, April.
  • Handle: RePEc:spr:climat:v:147:y:2018:i:3:d:10.1007_s10584-018-2160-z
    DOI: 10.1007/s10584-018-2160-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2160-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2160-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Dercon & Pramila Krishnan, 1996. "Income portfolios in rural Ethiopia and Tanzania: Choices and constraints," Journal of Development Studies, Taylor & Francis Journals, vol. 32(6), pages 850-875.
    2. Keating, B. A. & McCown, R. L., 2001. "Advances in farming systems analysis and intervention," Agricultural Systems, Elsevier, vol. 70(2-3), pages 555-579.
    3. Eric Rahn & Peter Läderach & María Baca & Charlotte Cressy & Götz Schroth & Daniella Malin & Henk Rikxoort & Jefferson Shriver, 2014. "Climate change adaptation, mitigation and livelihood benefits in coffee production: where are the synergies?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(8), pages 1119-1137, December.
    4. Arun Agrawal, 1995. "Dismantling the Divide Between Indigenous and Scientific Knowledge," Development and Change, International Institute of Social Studies, vol. 26(3), pages 413-439, July.
    5. Stephen Whitfield, 2014. "Weighing Up the Risks: The Challenge of Studying ‘Risk’ in Empirical Research," IDS Bulletin, Blackwell Publishing, vol. 45(2-3), pages 7-17, March.
    6. Hansen, J. W. & Jones, J. W., 2000. "Scaling-up crop models for climate variability applications," Agricultural Systems, Elsevier, vol. 65(1), pages 43-72, July.
    7. Meza, Francisco J. & Silva, Daniel & Vigil, Hernan, 2008. "Climate change impacts on irrigated maize in Mediterranean climates: Evaluation of double cropping as an emerging adaptation alternative," Agricultural Systems, Elsevier, vol. 98(1), pages 21-30, July.
    8. Eakin, Hallie, 2005. "Institutional change, climate risk, and rural vulnerability: Cases from Central Mexico," World Development, Elsevier, vol. 33(11), pages 1923-1938, November.
    9. A. J. Challinor & A.-K. Koehler & J. Ramirez-Villegas & S. Whitfield & B. Das, 2016. "Current warming will reduce yields unless maize breeding and seed systems adapt immediately," Nature Climate Change, Nature, vol. 6(10), pages 954-958, October.
    10. Hallie Eakin & Catherine Tucker & Edwin Castellanos & Rafael Diaz-Porras & Juan Barrera & Helda Morales, 2014. "Adaptation in a multi-stressor environment: perceptions and responses to climatic and economic risks by coffee growers in Mesoamerica," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(1), pages 123-139, February.
    11. Ulrike Rippke & Julian Ramirez-Villegas & Andy Jarvis & Sonja J. Vermeulen & Louis Parker & Flora Mer & Bernd Diekkrüger & Andrew J. Challinor & Mark Howden, 2016. "Timescales of transformational climate change adaptation in sub-Saharan African agriculture," Nature Climate Change, Nature, vol. 6(6), pages 605-609, June.
    12. Jakku, E. & Thorburn, P.J., 2010. "A conceptual framework for guiding the participatory development of agricultural decision support systems," Agricultural Systems, Elsevier, vol. 103(9), pages 675-682, November.
    13. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    14. Stephen Whitfield, 2013. "Uncertainty, ignorance and ambiguity in crop modelling for African agricultural adaptation," Climatic Change, Springer, vol. 120(1), pages 325-340, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Delorit, Justin D. & Parker, Dominic P. & Block, Paul J., 2019. "An agro-economic approach to framing perennial farm-scale water resources demand management for water rights markets," Agricultural Water Management, Elsevier, vol. 218(C), pages 68-81.
    2. Bentley, Chance & Anandhi, Aavudai, 2020. "Representing driver-response complexity in ecosystems using an improved conceptual model," Ecological Modelling, Elsevier, vol. 437(C).
    3. Huizhao Yang & Sailesh Ranjitkar & Wenxuan Xu & Lei Han & Jianbo Yang & Liqing Wu & Jianchu Xu, 2021. "Crop-climate model in support of adjusting local ecological calendar in the Taxkorgan, eastern Pamir Plateau," Climatic Change, Springer, vol. 167(3), pages 1-19, August.
    4. Qiao, Shengchao & Harrison, Sandy P. & Prentice, I. Colin & Wang, Han, 2023. "Optimality-based modelling of wheat sowing dates globally," Agricultural Systems, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Whitfield & Sarah Chapman & Marcelin Tonye Mahop & Chetan Deva & Kennedy Masamba & Andekelile Mwamahonje, 2021. "Exploring assumptions in crop breeding for climate resilience: opportunities and principles for integrating climate model projections," Climatic Change, Springer, vol. 164(3), pages 1-18, February.
    2. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    3. Zack Guido & Sara Lopus & Kurt Waldman & Corrie Hannah & Andrew Zimmer & Natasha Krell & Chris Knudson & Lyndon Estes & Kelly Caylor & Tom Evans, 2021. "Perceived links between climate change and weather forecast accuracy: new barriers to tools for agricultural decision-making," Climatic Change, Springer, vol. 168(1), pages 1-20, September.
    4. James Watson & Andrew Challinor & Thomas Fricker & Christopher Ferro, 2015. "Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model," Climatic Change, Springer, vol. 132(1), pages 93-109, September.
    5. Vasilii Erokhin & Alexander Esaulko & Elena Pismennaya & Evgeny Golosnoy & Olga Vlasova & Anna Ivolga, 2021. "Combined Impact of Climate Change and Land Qualities on Winter Wheat Yield in Central Fore-Caucasus: The Long-Term Retrospective Study," Land, MDPI, vol. 10(12), pages 1-28, December.
    6. Rory G. J. Fitzpatrick & Douglas J. Parker & John H. Marsham & David P. Rowell & Lawrence S. Jackson & Declan Finney & Chetan Deva & Simon Tucker & Rachael Stratton, 2020. "How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model," Climatic Change, Springer, vol. 163(1), pages 267-296, November.
    7. Luis Moisés Peña-Lévano & Farzad Taheripour & Wallace E. Tyner, 2019. "Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 653-675, October.
    8. Meine van Noordwijk & Richard Coe & Fergus L. Sinclair & Eike Luedeling & Jules Bayala & Catherine W. Muthuri & Peter Cooper & Roeland Kindt & Lalisa Duguma & Christine Lamanna & Peter A. Minang, 2021. "Climate change adaptation in and through agroforestry: four decades of research initiated by Peter Huxley," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(5), pages 1-33, June.
    9. Manners, Rhys & Vandamme, Elke & Adewopo, Julius & Thornton, Philip & Friedmann, Michael & Carpentier, Sebastien & Ezui, Kodjovi Senam & Thiele, Graham, 2021. "Suitability of root, tuber, and banana crops in Central Africa can be favoured under future climates," Agricultural Systems, Elsevier, vol. 193(C).
    10. Antonelli, Chiara & Coromaldi, Manuela & Pallante, Giacomo, 2022. "Crop and income diversification for rural adaptation: Insights from Ugandan panel data," Ecological Economics, Elsevier, vol. 195(C).
    11. Charles Onyutha, 2018. "African crop production trends are insufficient to guarantee food security in the sub-Saharan region by 2050 owing to persistent poverty," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1203-1219, October.
    12. Ben Parkes & Benjamin Sultan & Philippe Ciais, 2018. "The impact of future climate change and potential adaptation methods on Maize yields in West Africa," Climatic Change, Springer, vol. 151(2), pages 205-217, November.
    13. Fleming, Aysha & Stitzlein, Cara & Jakku, Emma & Fielke, Simon, 2019. "Missed opportunity? Framing actions around co-benefits for carbon mitigation in Australian agriculture," Land Use Policy, Elsevier, vol. 85(C), pages 230-238.
    14. Tianyi Zhang & Yong He & Ron DePauw & Zhenong Jin & David Garvin & Xu Yue & Weston Anderson & Tao Li & Xin Dong & Tao Zhang & Xiaoguang Yang, 2022. "Climate change may outpace current wheat breeding yield improvements in North America," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Che-Chen Xu & Wen-Xiang Wu & Quan-Sheng Ge & Yang Zhou & Yu-Mei Lin & Ya-Mei Li, 2017. "Simulating climate change impacts and potential adaptations on rice yields in the Sichuan Basin, China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(4), pages 565-594, April.
    16. Marcin Pawel Jarzebski & Abubakari Ahmed & Yaw Agyeman Boafo & Boubacar Siddighi Balde & Linda Chinangwa & Osamu Saito & Graham Maltitz & Alexandros Gasparatos, 2020. "Food security impacts of industrial crop production in sub-Saharan Africa: a systematic review of the impact mechanisms," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 105-135, February.
    17. Komarek, Adam M. & Thierfelder, Christian & Steward, Peter R., 2021. "Conservation agriculture improves adaptive capacity of cropping systems to climate stress in Malawi," Agricultural Systems, Elsevier, vol. 190(C).
    18. Oscar J. Cacho & Jonathan Moss & Philip K. Thornton & Mario Herrero & Ben Henderson & Benjamin L. Bodirsky & Florian Humpenöder & Alexander Popp & Leslie Lipper, 2020. "The value of climate-resilient seeds for smallholder adaptation in sub-Saharan Africa," Climatic Change, Springer, vol. 162(3), pages 1213-1229, October.
    19. Piers Blaikie, 2000. "Development, Post-, Anti-, and Populist: A Critical Review," Environment and Planning A, , vol. 32(6), pages 1033-1050, June.
    20. Busby, Joshua & Smith, Todd G. & Krishnan, Nisha & Wight, Charles & Vallejo-Gutierrez, Santiago, 2018. "In harm's way: Climate security vulnerability in Asia," World Development, Elsevier, vol. 112(C), pages 88-118.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:147:y:2018:i:3:d:10.1007_s10584-018-2160-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.