IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v151y2018i2d10.1007_s10584-018-2290-3.html
   My bibliography  Save this article

The impact of future climate change and potential adaptation methods on Maize yields in West Africa

Author

Listed:
  • Ben Parkes

    (Sorbonne Universités
    University of Manchester)

  • Benjamin Sultan

    (Univ. Montpellier, IRD, Univ. Guyane, Univ. Réunion, Univ. Antilles, Univ. Avignon)

  • Philippe Ciais

    (Centre d’Etudes Orme des Merisiers)

Abstract

Maize (Zea mays) is one of the staple crops of West Africa and is therefore of high importance with regard to future food security. The ability of West Africa to produce enough food is critical as the population is expected to increase well into the twenty-first century. In this study, a process-based crop model is used to project maize yields in Africa for global temperatures 2 K and 4 K above the preindustrial control. This study investigates how yields and crop failure rates are influenced by climate change and the efficacy of adaptation methods to mitigate the effects of climate change. To account for the uncertainties in future climate projections, multiple model runs have been performed at specific warming levels of + 2 K and + 4 K to give a better estimate of future crop yields. Under a warming of + 2 K, the maize yield is projected to reduce by 5.9% with an increase in both mild and severe crop failure rates. Mild and severe crop failures are yields 1 and 1.5 standard deviations below the observed yield. At a warming of + 4 K, the results show a yield reduction of 37% and severe crop failures which previously only occurred once in 19.7 years are expected to happen every 2.5 years. Crops simulated with a resistance to high temperature stress show an increase in yields in all climate conditions compared to unadapted crops; however, they still experience more crop failures than the unadapted crop in the control climate.

Suggested Citation

  • Ben Parkes & Benjamin Sultan & Philippe Ciais, 2018. "The impact of future climate change and potential adaptation methods on Maize yields in West Africa," Climatic Change, Springer, vol. 151(2), pages 205-217, November.
  • Handle: RePEc:spr:climat:v:151:y:2018:i:2:d:10.1007_s10584-018-2290-3
    DOI: 10.1007/s10584-018-2290-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-018-2290-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-018-2290-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulrike Rippke & Julian Ramirez-Villegas & Andy Jarvis & Sonja J. Vermeulen & Louis Parker & Flora Mer & Bernd Diekkrüger & Andrew J. Challinor & Mark Howden, 2016. "Timescales of transformational climate change adaptation in sub-Saharan African agriculture," Nature Climate Change, Nature, vol. 6(6), pages 605-609, June.
    2. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    2. Rory G. J. Fitzpatrick & Douglas J. Parker & John H. Marsham & David P. Rowell & Lawrence S. Jackson & Declan Finney & Chetan Deva & Simon Tucker & Rachael Stratton, 2020. "How a typical West African day in the future-climate compares with current-climate conditions in a convection-permitting and parameterised convection climate model," Climatic Change, Springer, vol. 163(1), pages 267-296, November.
    3. Benjamin Kipkemboi Kogo & Lalit Kumar & Richard Koech, 2021. "Climate change and variability in Kenya: a review of impacts on agriculture and food security," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 23-43, January.
    4. de Bruin, Kelly & Ayuba, Victoria, 2020. "What does Paris mean for Africa? An Integrated Assessment analysis of the effects of the Paris Agreement on African economies," Papers WP690, Economic and Social Research Institute (ESRI).
    5. Adam, Myriam & MacCarthy, Dilys Sefakor & Traoré, Pierre C. Sibiry & Nenkam, Andree & Freduah, Bright Salah & Ly, Mouhamed & Adiku, Samuel G.K., 2020. "Which is more important to sorghum production systems in the Sudano-Sahelian zone of West Africa: Climate change or improved management practices?," Agricultural Systems, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasilii Erokhin & Alexander Esaulko & Elena Pismennaya & Evgeny Golosnoy & Olga Vlasova & Anna Ivolga, 2021. "Combined Impact of Climate Change and Land Qualities on Winter Wheat Yield in Central Fore-Caucasus: The Long-Term Retrospective Study," Land, MDPI, vol. 10(12), pages 1-28, December.
    2. Luis Moisés Peña-Lévano & Farzad Taheripour & Wallace E. Tyner, 2019. "Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 653-675, October.
    3. Louise Beveridge & Stephen Whitfield & Andy Challinor, 2018. "Crop modelling: towards locally relevant and climate-informed adaptation," Climatic Change, Springer, vol. 147(3), pages 475-489, April.
    4. Antonelli, Chiara & Coromaldi, Manuela & Pallante, Giacomo, 2022. "Crop and income diversification for rural adaptation: Insights from Ugandan panel data," Ecological Economics, Elsevier, vol. 195(C).
    5. Marcin Pawel Jarzebski & Abubakari Ahmed & Yaw Agyeman Boafo & Boubacar Siddighi Balde & Linda Chinangwa & Osamu Saito & Graham Maltitz & Alexandros Gasparatos, 2020. "Food security impacts of industrial crop production in sub-Saharan Africa: a systematic review of the impact mechanisms," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 105-135, February.
    6. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    7. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    8. Ignaciuk, Ada & Malevolti, Giulia & Scognamillo, Antonio & Sitko, Nicholas J., 2022. "Can food aid relax farmers’ constraints to adopting climate-adaptive agricultural practices? Evidence from Ethiopia, Malawi and the United Republic of Tanzania," ESA Working Papers 324073, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    9. Dilshad Ahmad & Muhammad Afzal & Abdur Rauf, 2019. "Analysis of wheat farmers’ risk perceptions and attitudes: evidence from Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 845-861, February.
    10. Francisco Costa & Fabien Forge & Jason Garred & João Paulo Pessoa, 2020. "Climate Change and the Distribution of Agricultural Output," Working Papers 2003E, University of Ottawa, Department of Economics.
    11. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    12. Konrad Prandecki & Edyta Gajos, 2018. "Reductin of greenhouse gases emission and sustainability: The multi-criteria approach," International Conference on Competitiveness of Agro-food and Environmental Economy Proceedings, The Bucharest University of Economic Studies, vol. 7, pages 46-54.
    13. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    14. Gil-Clavel, Sofia & Wagenblast, Thorid & Filatova, Tatiana, 2023. "Farmers’ Incremental and Transformational Climate Change Adaptation in Different Regions: A Natural Language Processing Comparative Literature Review," SocArXiv 3dp5e, Center for Open Science.
    15. Sabina Thaler & Herbert Formayer & Gerhard Kubu & Miroslav Trnka & Josef Eitzinger, 2021. "Effects of Bias-Corrected Regional Climate Projections and Their Spatial Resolutions on Crop Model Results under Different Climatic and Soil Conditions in Austria," Agriculture, MDPI, vol. 11(11), pages 1-39, October.
    16. Kamdi, Prasad Jairam & Swain, Dillip Kumar & Wani, Suhas P., 2023. "Developing climate change agro-adaptation strategies through field experiments and simulation analyses for sustainable sorghum production in semi-arid tropics of India," Agricultural Water Management, Elsevier, vol. 286(C).
    17. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).
    18. Angga Pradesha & Sherman Robinson & Mark W. Rosegrant & Nicostrato Perez & Timothy S. Thomas, 2022. "Exploring transformational adaptation strategy through agricultural policy reform in the Philippines," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(6), pages 1435-1447, December.
    19. Imran, Muhammad Ali & Ali, Asghar & Ashfaq, Muhammad & Hassan, Sarfraz & Culas, Richard & Ma, Chunbo, 2019. "Impact of climate smart agriculture (CSA) through sustainable irrigation management on Resource use efficiency: A sustainable production alternative for cotton," Land Use Policy, Elsevier, vol. 88(C).
    20. Richard Lalou & Benjamin Sultan & Bertrand Muller & Alphousseyni Ndonky, 2019. "Does climate opportunity facilitate smallholder farmers’ adaptive capacity in the Sahel?," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:151:y:2018:i:2:d:10.1007_s10584-018-2290-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.