IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v126y2014i3p429-442.html
   My bibliography  Save this article

Estimating climate change effects on net primary production of rangelands in the United States

Author

Listed:
  • Matthew Reeves
  • Adam Moreno
  • Karen Bagne
  • Steven Running

Abstract

The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO 2 enrichment and nitrogen deposition were evaluated as drivers of NPP. Across all three scenarios, rangeland NPP increased by 0.26 % year −1 (7 kg C ha −1 year −1 ) but increases were not apparent until after 2030 and significant regional variation in NPP was revealed. The Desert Southwest and Southwest assessment regions exhibited declines in NPP of about 7 % by 2100, while the Northern and Southern Great Plains, Interior West and Eastern Prairies all experienced increases over 25 %. Grasslands dominated by warm season (C4 photosynthetic pathway) species showed the greatest response to temperature while cool season (C3 photosynthetic pathway) dominated regions responded most strongly to CO 2 enrichment. Modeled NPP responses compared favorably with experimental results from CO 2 manipulation experiments and to NPP estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS). Collectively, these results indicate significant and asymmetric changes in NPP for U.S. rangelands may be expected. Copyright The Author(s) 2014

Suggested Citation

  • Matthew Reeves & Adam Moreno & Karen Bagne & Steven Running, 2014. "Estimating climate change effects on net primary production of rangelands in the United States," Climatic Change, Springer, vol. 126(3), pages 429-442, October.
  • Handle: RePEc:spr:climat:v:126:y:2014:i:3:p:429-442
    DOI: 10.1007/s10584-014-1235-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1235-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1235-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chiesi, M. & Maselli, F. & Moriondo, M. & Fibbi, L. & Bindi, M. & Running, S.W., 2007. "Application of BIOME-BGC to simulate Mediterranean forest processes," Ecological Modelling, Elsevier, vol. 206(1), pages 179-190.
    2. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    3. Jack A. Morgan & Daniel R. LeCain & Elise Pendall & Dana M. Blumenthal & Bruce A. Kimball & Yolima Carrillo & David G. Williams & Jana Heisler-White & Feike A. Dijkstra & Mark West, 2011. "C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland," Nature, Nature, vol. 476(7359), pages 202-205, August.
    4. Hanson, J. D. & Baker, B. B. & Bourdon, R. M., 1993. "Comparison of the effects of different climate change scenarios on rangeland livestock production," Agricultural Systems, Elsevier, vol. 41(4), pages 487-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunbo Chen & Chi Zhang, 2017. "Projecting the CO 2 and Climatic Change Effects on the Net Primary Productivity of the Urban Ecosystems in Phoenix, AZ in the 21st Century under Multiple RCP (Representative Concentration Pathway) Sce," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    2. J. Shannon Neibergs & Tipton D. Hudson & Chad E. Kruger & Kaelin Hamel-Rieken, 2018. "Estimating climate change effects on grazing management and beef cattle production in the Pacific Northwest," Climatic Change, Springer, vol. 146(1), pages 5-17, January.
    3. Xiangwei Zhao & Qian Gao & Yaojie Yue & Lian Duan & Shun Pan, 2018. "A System Analysis on Steppe Sustainability and Its Driving Forces—A Case Study in China," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    4. Jianjian He & Pengyan Zhang & Wenlong Jing & Yuhang Yan, 2018. "Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    5. Chaobin Zhang & Ying Zhang & Jianlong Li, 2019. "Grassland Productivity Response to Climate Change in the Hulunbuir Steppes of China," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    6. Dennis S. Ojima & Rebecca Aicher & Steven R. Archer & Derek W. Bailey & Susan M. Casby-Horton & Nancy Cavallaro & Julian J. Reyes & John A. Tanaka & Robert A. Washington-Allen, 2020. "A climate change indicator framework for rangelands and pastures of the USA," Climatic Change, Springer, vol. 163(4), pages 1733-1750, December.
    7. Haiming Yan & Jinyan Zhan & Feng Wu & Huicai Yang, 2016. "Effects of Climate Change and LUCC on Terrestrial Biomass in the Lower Heihe River Basin during 2001–2010," Energies, MDPI, vol. 9(4), pages 1-18, April.
    8. K. M. Havstad & J. R. Brown & R. Estell & E. Elias & A. Rango & C. Steele, 2018. "Vulnerabilities of Southwestern U.S. Rangeland-based animal agriculture to climate change," Climatic Change, Springer, vol. 148(3), pages 371-386, June.
    9. Matthew O. Jones & Steven W. Running & John S. Kimball & Nathaniel P. Robinson & Brady W. Allred, 2020. "Terrestrial primary productivity indicators for inclusion in the National Climate Indicators System," Climatic Change, Springer, vol. 163(4), pages 1855-1868, December.
    10. Vaiknoras, Kate & Kiker, Greg & Nkonya, Ephraim & Morgan, Savannah & Beckman, Jayson & Johnson, Michael E. & Ivanic, Maros, 2024. "The Effect of Climate Change on Herbaceous Biomass and Implications for Global Cattle Production," Economic Research Report 347200, United States Department of Agriculture, Economic Research Service.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    2. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    3. Wang, Qinying & He, Hong S. & Liu, Kai & Zong, Shengwei & Du, Haibo, 2023. "Comparing simulated tree biomass from daily, monthly, and seasonal climate input of terrestrial ecosystem model," Ecological Modelling, Elsevier, vol. 483(C).
    4. Soheil Shayegh & Johannes Emmerling & Massimo Tavoni, 2022. "International Migration Projections across Skill Levels in the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    5. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    7. Bell, Kendon & Zilberman, David, 2016. "The potential for renewable fuels under greenhouse gas pricing: The case of sugarcane in Brazil," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt03h2850w, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Ma, Shaoxiu & Churkina, Galina & Wieland, Ralf & Gessler, Arthur, 2011. "Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe," Ecological Modelling, Elsevier, vol. 222(20), pages 3662-3679.
    9. Kaj M. Hansen & Jesper H. Christensen & Jørgen Brandt, 2015. "The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study," IJERPH, MDPI, vol. 12(9), pages 1-15, September.
    10. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    11. Evangelos Grigoroudis & Vassilis S. Kouikoglou & Yannis A. Phillis & Fotis D. Kanellos, 2021. "Energy sustainability: a definition and assessment model," Operational Research, Springer, vol. 21(3), pages 1845-1885, September.
    12. Electra V. Petracou & Anastasios Xepapadeas & Athanasios N. Yannacopoulos, 2022. "Decision Making Under Model Uncertainty: Fréchet–Wasserstein Mean Preferences," Management Science, INFORMS, vol. 68(2), pages 1195-1211, February.
    13. Grundy, Michael J. & Bryan, Brett A. & Nolan, Martin & Battaglia, Michael & Hatfield-Dodds, Steve & Connor, Jeffery D. & Keating, Brian A., 2016. "Scenarios for Australian agricultural production and land use to 2050," Agricultural Systems, Elsevier, vol. 142(C), pages 70-83.
    14. Pazzagli, Pietro T. & Weiner, Jacob & Liu, Fulai, 2016. "Effects of CO2 elevation and irrigation regimes on leaf gas exchange, plant water relations, and water use efficiency of two tomato cultivars," Agricultural Water Management, Elsevier, vol. 169(C), pages 26-33.
    15. Bista, Raghu, 2019. "Trend and Forecasting Analysis on Climate Variability: A case of Nepal," MPRA Paper 98788, University Library of Munich, Germany, revised 23 Apr 2019.
    16. Chen, Xiaoping & Qi, Zhiming & Gui, Dongwei & Gu, Zhe & Ma, Liwang & Zeng, Fanjiang & Li, Lanhai, 2019. "Simulating impacts of climate change on cotton yield and water requirement using RZWQM2," Agricultural Water Management, Elsevier, vol. 222(C), pages 231-241.
    17. David Rodziewicz & Christopher J. Amante & Jacob Dice & Eugene Wahl, 2022. "Housing market impairment from future sea-level rise inundation," Environment Systems and Decisions, Springer, vol. 42(4), pages 637-656, December.
    18. Amber Wright & Mark Schwartz & Robert Hijmans & H. Bradley Shaffer, 2016. "Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians," Climatic Change, Springer, vol. 134(4), pages 579-591, February.
    19. Hong Li & Chong-Yu Xu & Stein Beldring & Lena Merete Tallaksen & Sharad K. Jain, 2016. "Water Resources Under Climate Change in Himalayan Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 843-859, January.
    20. Goher-Ur-Rehman Mir & Servaas Storm, 2016. "Carbon Emissions and Economic Growth: Production-based versus Consumption-based Evidence on Decoupling," Working Papers Series 41, Institute for New Economic Thinking.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:126:y:2014:i:3:p:429-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.