IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i12d10.1007_s11269-017-1726-2.html
   My bibliography  Save this article

An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow

Author

Listed:
  • Siriporn Supratid

    (Rangsit University)

  • Thannob Aribarg

    (Rangsit University
    Rangsit University)

  • Seree Supharatid

    (Provincial Waterworks Authority)

Abstract

For effective water resources management and planning, an accurate reservoir inflow forecast is essential not only in training and testing phases but also in particular future periods. The objective of this study is to develop a reservoir inflow integrated forecasting model, relying on nonlinear autoregressive neural network with exogenous input (NARX) and stationary wavelet transform (SWT), namely SWT-NARX. Due to the elimination of down-sampling operation, SWT provides influential reinforcement of efficiently extracting the hidden significant, temporal features contained in the nonstationary inflow time series without information loss. The decomposed SWT sub-time series are determined as input-output for NARX forecaster; where a multi-model ensemble global mean (MMEGM) of downscaled precipitation based on nine global climate models (GCMs) represents as a climate-change exogenous input. Two major reservoirs in Thailand, Bhumibol and Sirikit ones are focused. Pearson’s correlation coefficient (r) and root mean square error (RMSE) are employed for performance evaluation. The achieved results indicate that the SWT-NARX explicitly outperforms the comparable forecasting approaches regarding a historical baseline period (1980–1999). Therefore, such SWT-NARX is further employed for future projection of the reservoir inflow over near (2010–2039) -, mid (2040–2069) - and far (2070–2099) - future periods against the inflow of the baseline one.

Suggested Citation

  • Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:12:d:10.1007_s11269-017-1726-2
    DOI: 10.1007/s11269-017-1726-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1726-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1726-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joeri Rogelj & Malte Meinshausen & Reto Knutti, 2012. "Global warming under old and new scenarios using IPCC climate sensitivity range estimates," Nature Climate Change, Nature, vol. 2(4), pages 248-253, April.
    2. S. Mohanty & Madan Jha & S. Raul & R. Panda & K. Sudheer, 2015. "Using Artificial Neural Network Approach for Simultaneous Forecasting of Weekly Groundwater Levels at Multiple Sites," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5521-5532, December.
    3. Mohamed Shenify & Amir Danesh & Milan Gocić & Ros Taher & Ainuddin Abdul Wahab & Abdullah Gani & Shahaboddin Shamshirband & Dalibor Petković, 2016. "Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(2), pages 641-652, January.
    4. Sanjeet Kumar & Mukesh Tiwari & Chandranath Chatterjee & Ashok Mishra, 2015. "Reservoir Inflow Forecasting Using Ensemble Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4863-4883, October.
    5. Zaw Latt, 2015. "Application of Feedforward Artificial Neural Network in Muskingum Flood Routing: a Black-Box Forecasting Approach for a Natural River System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4995-5014, November.
    6. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Biglarbeigi & W. A. Strong & D. Finlay & R. McDermott & P. Griffiths, 2020. "A Hybrid Model-Based Adaptive Framework for the Analysis of Climate Change Impact on Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4053-4066, October.
    2. Adisa Hammed Akinsoji & Bashir Adelodun & Qudus Adeyi & Rahmon Abiodun Salau & Golden Odey & Kyung Sook Choi, 2024. "Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4735-4761, September.
    3. Daniel v{S}tifani'c & Jelena Musulin & Adrijana Miov{c}evi'c & Sandi Baressi v{S}egota & Roman v{S}ubi'c & Zlatan Car, 2020. "Impact of COVID-19 on Forecasting Stock Prices: An Integration of Stationary Wavelet Transform and Bidirectional Long Short-Term Memory," Papers 2007.02673, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Biglarbeigi & W. A. Strong & D. Finlay & R. McDermott & P. Griffiths, 2020. "A Hybrid Model-Based Adaptive Framework for the Analysis of Climate Change Impact on Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4053-4066, October.
    2. Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.
    3. Ming Wei & Xue-yi You, 2022. "Monthly rainfall forecasting by a hybrid neural network of discrete wavelet transformation and deep learning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4003-4018, September.
    4. Haijiao Yu & Xiaohu Wen & Qi Feng & Ravinesh C. Deo & Jianhua Si & Min Wu, 2018. "Comparative Study of Hybrid-Wavelet Artificial Intelligence Models for Monthly Groundwater Depth Forecasting in Extreme Arid Regions, Northwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 301-323, January.
    5. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    6. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    7. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.
    8. Saeid Mehdizadeh & Javad Behmanesh & Keivan Khalili, 2018. "New Approaches for Estimation of Monthly Rainfall Based on GEP-ARCH and ANN-ARCH Hybrid Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(2), pages 527-545, January.
    9. Soheil Shayegh & Johannes Emmerling & Massimo Tavoni, 2022. "International Migration Projections across Skill Levels in the Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 14(8), pages 1-33, April.
    10. Liu, Jinhai & Su, Hanguang & Ma, Yanjuan & Wang, Gang & Wang, Yuan & Zhang, Kun, 2016. "Chaos characteristics and least squares support vector machines based online pipeline small leakages detection," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 656-669.
    11. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    12. Mohammad Naderianfar & Jamshid Piri & Ozgur Kisi, 2017. "Pre-processing data to predict groundwater levels using the fuzzy standardized evapotranspiration and precipitation index (SEPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(14), pages 4433-4448, November.
    13. Muhammad Shoaib & Asaad Y. Shamseldin & Sher Khan & Mudasser Muneer Khan & Zahid Mahmood Khan & Tahir Sultan & Bruce W. Melville, 2018. "A Comparative Study of Various Hybrid Wavelet Feedforward Neural Network Models for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 83-103, January.
    14. Bell, Kendon & Zilberman, David, 2016. "The potential for renewable fuels under greenhouse gas pricing: The case of sugarcane in Brazil," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt03h2850w, Department of Agricultural & Resource Economics, UC Berkeley.
    15. Kaj M. Hansen & Jesper H. Christensen & Jørgen Brandt, 2015. "The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study," IJERPH, MDPI, vol. 12(9), pages 1-15, September.
    16. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    17. Tao Li & Olivyn Angeles & Ando Radanielson & Manuel Marcaida & Emmali Manalo, 2015. "Drought stress impacts of climate change on rainfed rice in South Asia," Climatic Change, Springer, vol. 133(4), pages 709-720, December.
    18. Soma Sarkar & Vinay Gangare & Poonam Singh & Ramesh C. Dhiman, 2019. "Shift in Potential Malaria Transmission Areas in India, Using the Fuzzy-Based Climate Suitability Malaria Transmission (FCSMT) Model under Changing Climatic Conditions," IJERPH, MDPI, vol. 16(18), pages 1-16, September.
    19. Evangelos Grigoroudis & Vassilis S. Kouikoglou & Yannis A. Phillis & Fotis D. Kanellos, 2021. "Energy sustainability: a definition and assessment model," Operational Research, Springer, vol. 21(3), pages 1845-1885, September.
    20. Electra V. Petracou & Anastasios Xepapadeas & Athanasios N. Yannacopoulos, 2022. "Decision Making Under Model Uncertainty: Fréchet–Wasserstein Mean Preferences," Management Science, INFORMS, vol. 68(2), pages 1195-1211, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:12:d:10.1007_s11269-017-1726-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.