IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v36y2022i1d10.1007_s11269-021-03035-7.html
   My bibliography  Save this article

Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model

Author

Listed:
  • Jinping Zhang

    (Zhengzhou University
    Zhengzhou University)

  • Honglin Xiao

    (Zhengzhou University)

  • Hongyuan Fang

    (Zhengzhou University)

Abstract

Improving the accuracy of hydrological prediction for long-term annual runoff series is important for water resources management and planning. In this study, the complementary ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to decompose the runoff time series of the Tangnaihai hydrological station in the source area of the Yellow River (SAYR) from 1960 to 2017. The component reconstructions are evaluated with the Nash–Sutcliffe efficiency (NSE) coefficient, and the autoregressive moving average (ARMA) model is used to simulate and predict the runoff components at multi-time scales, which are also evaluated with the NSE coefficient. The results show that the NSE coefficient of the component simulations and predictions by ARMA are relatively high. Moreover, the NSE coefficients increase in step with the fluctuation period of the runoff component. For the runoff component-based reconstruction models at multi-time scales, the mean relative errors of simulation and prediction are low at 8.25% and 8.78%, respectively. In addition, the high-frequency components play an important role in the modal reconstruction as well as the simulation and prediction. Thus, focusing on the high-frequency components can improve the overall accuracy of runoff prediction based on the ARMA model at multi-time scales.

Suggested Citation

  • Jinping Zhang & Honglin Xiao & Hongyuan Fang, 2022. "Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 433-448, January.
  • Handle: RePEc:spr:waterr:v:36:y:2022:i:1:d:10.1007_s11269-021-03035-7
    DOI: 10.1007/s11269-021-03035-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-03035-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-03035-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    2. Xue-hua Zhao & Xu Chen, 2015. "Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2913-2926, June.
    3. Yue Qin & John T. Abatzoglou & Stefan Siebert & Laurie S. Huning & Amir AghaKouchak & Justin S. Mankin & Chaopeng Hong & Dan Tong & Steven J. Davis & Nathaniel D. Mueller, 2020. "Agricultural risks from changing snowmelt," Nature Climate Change, Nature, vol. 10(5), pages 459-465, May.
    4. Bhumika Uniyal & Madan Jha & Arbind Verma, 2015. "Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4767-4785, October.
    5. Maryam Shafaei & Ozgur Kisi, 2016. "Lake Level Forecasting Using Wavelet-SVR, Wavelet-ANFIS and Wavelet-ARMA Conjunction Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 79-97, January.
    6. Sanjeet Kumar & Mukesh Tiwari & Chandranath Chatterjee & Ashok Mishra, 2015. "Reservoir Inflow Forecasting Using Ensemble Models Based on Neural Networks, Wavelet Analysis and Bootstrap Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4863-4883, October.
    7. Adnan Bashir & Muhammad Ahmed Shehzad & Ijaz Hussain & Muhammad Ishaq Asif Rehmani & Sajjad Haider Bhatti, 2019. "Reservoir Inflow Prediction by Ensembling Wavelet and Bootstrap Techniques to Multiple Linear Regression Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(15), pages 5121-5136, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Binglin Li & Hao Xu & Yufeng Lian & Pai Li & Yong Shao & Chunyu Tan, 2023. "An Empirical Modal Decomposition-Improved Whale Optimization Algorithm-Long Short-Term Memory Hybrid Model for Monitoring and Predicting Water Quality Parameters," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    2. Wei Li & Xiaosheng Wang & Shujiang Pang & Haiying Guo, 2022. "A Runoff Prediction Model Based on Nonhomogeneous Markov Chain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1431-1442, March.
    3. Xianqi Zhang & Wenbao Qiao & Yaohui Lu & Jiafeng Huang & Yimeng Xiao, 2023. "Quantitative Analysis of the Influence of the Xiaolangdi Reservoir on Water and Sediment in the Middle and Lower Reaches of the Yellow River," IJERPH, MDPI, vol. 20(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xike Zhang & Qiuwen Zhang & Gui Zhang & Zhiping Nie & Zifan Gui & Huafei Que, 2018. "A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition," IJERPH, MDPI, vol. 15(5), pages 1-23, May.
    2. Siriporn Supratid & Thannob Aribarg & Seree Supharatid, 2017. "An Integration of Stationary Wavelet Transform and Nonlinear Autoregressive Neural Network with Exogenous Input for Baseline and Future Forecasting of Reservoir Inflow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 4023-4043, September.
    3. Vahid Moosavi & Ali Talebi & Mohammad Reza Hadian, 2017. "Development of a Hybrid Wavelet Packet- Group Method of Data Handling (WPGMDH) Model for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 43-59, January.
    4. P. Biglarbeigi & W. A. Strong & D. Finlay & R. McDermott & P. Griffiths, 2020. "A Hybrid Model-Based Adaptive Framework for the Analysis of Climate Change Impact on Reservoir Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4053-4066, October.
    5. Chuan Li & Yun Bai & Bo Zeng, 2016. "Deep Feature Learning Architectures for Daily Reservoir Inflow Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5145-5161, November.
    6. Mouatadid, Soukayna & Adamowski, Jan F. & Tiwari, Mukesh K. & Quilty, John M., 2019. "Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting," Agricultural Water Management, Elsevier, vol. 219(C), pages 72-85.
    7. Tian Peng & Chu Zhang & Jianzhong Zhou & Xin Xia & Xiaoming Xue, 2019. "Multi-Objective Optimization for Flood Interval Prediction Based on Orthogonal Chaotic NSGA-II and Kernel Extreme Learning Machine," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4731-4748, November.
    8. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Potter, Nicholas A. & Hrozencik, R. Aaron & Wallander, Steven, 2023. "Irrigation Organizations: Water Inflows and Outflows," Economic Brief 338976, United States Department of Agriculture, Economic Research Service.
    10. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    11. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    12. R. R. McCrary & L. O. Mearns & M. Hughes & S. Biner & M. S. Bukovsky, 2022. "Projections of North American snow from NA-CORDEX and their uncertainties, with a focus on model resolution," Climatic Change, Springer, vol. 170(3), pages 1-25, February.
    13. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    14. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    15. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    16. Phong Nguyen Thanh & Thinh Le Van & Tuan Tran Minh & Tuyen Huynh Ngoc & Worapong Lohpaisankrit & Quoc Bao Pham & Alexandre S. Gagnon & Proloy Deb & Nhat Truong Pham & Duong Tran Anh & Vuong Nguyen Din, 2023. "Adapting to Climate-Change-Induced Drought Stress to Improve Water Management in Southeast Vietnam," Sustainability, MDPI, vol. 15(11), pages 1-27, June.
    17. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    18. Liangxu Liu & Xueyong Zhao & Qinglan Meng & He Zhao & Xiaoqian Lu & Junkai Gao & Xueli Chang, 2017. "Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    19. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    20. Carolina Natel Moura & Sílvio Luís Rafaeli Neto & Claudia Guimarães Camargo Campos & Eder Alexandre Schatz Sá, 2020. "Hydrological Impacts of Climate Change in a Well-preserved Upland Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(8), pages 2255-2267, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:36:y:2022:i:1:d:10.1007_s11269-021-03035-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.